

D5.2 Semantic Web based Product Modelling Ontology (PMO) - BIM Information Management and Quality Control. Oct. 2016 1 - 79

Streamer

D5.2

Semantic Web based Product
Modelling Ontology (PMO) -
BIM Information Management and Quality Control

Deliverable Report: 5.2 Final Version

Streamer - Optimised design methodologies for energy-efficient buildings integrated in the neighbourhood energy systems.

The Streamer project is co-financed by the European Commission under the seventh research framework programme FP7.EeB.NMP.2013-5; GA No. 608739)

Issue Date 1 November 2016
Produced by AEC3, CSTB, DJG, DWA, KIT, NCC, TNO,
Main author Matthias Weise, Thomas Liebich, Nick Nisbet (AEC3)
Co-authors Bruno Hilaire, Audrey Vial (CSTB), Danny Werensteijin (DJG), Jan-Peter Pols (DWA), Steffen

Hempel, Karl-Heinz Häfele (KIT), Stefan Dehlin (NCC), Thorsten Lang (IAA),
Jan-Peter-Pols (DWA), Pim van den Helm (TNO),

Version: Final
Reviewed by Hassan Sleimann (CEA), Thorsten Lang (IAA)
Approved by Freek Bomhof (TNO), Marc Bourdeau (CSTB)
Dissemination O, PU

Colophon

Copyright © 21016 by Streamer consortium

Use of any knowledge, information or data contained in this document shall be at the user's sole risk. Neither the Streamer Consortium nor any of its members, their offic-
ers, employees or agents accept shall be liable or responsible, in negligence or otherwise, for any loss, damage or expense whatever sustained by any person as a result
of the use, in any manner or form, of any knowledge, information or data contained in this document, or due to any inaccuracy, omission or error therein contained. If you
notice information in this publication that you believe should be corrected or updated, please contact us. We shall try to remedy the problem.

The authors intended not to use any copyrighted material for the publication or, if not possible, to indicate the copyright of the respective object. The copyright for any
material created by the authors is reserved. Any duplication or use of objects such as diagrams, sounds or texts in other electronic or printed publications is not permitted
without the author's agreement.

The Streamer project is co-financed by the European Commission under the seventh research framework programme with contract No.: .608739 - FP7-
2013-NMP-ENV-EeB. The information in this publication does not necessarily represent the view of the European Commission. The European Commis-
sion shall not in any way be liable or responsible for the use of any such knowledge, information or data, or of the consequences thereof.

D5.2

Semantic Web based Product
Modelling Ontology (PMO) -
BIM Information Management and Quality Control

Publishable executive summary

This document, deliverable 5.2 “Semantic Web based Product Modelling Ontology (PMO)”, is dealing with BIM

information management and quality control. Knowledge about hospital design (through typologies, labels, PoR

template, and design rules) has been developed in WP1, WP2 and WP3. Based on this outcome, and following the

state-of-the art analysis and the conclusion of previous deliverable 5.1 that recommended to follow a hybrid ap-

proach, we focus in this deliverable on formalizing information exchanges between tools at different steps of the

design process and their application in the BIM/IFC world via the mvdXML format. This replaces the originally

planned intent to develop a Semantic Web-based PMO that integrates all relevant design and checking knowledge

in a single specification, but would have introduced another layer of complexity and the need for developing a

related tool to be used in STREAMER, without any foreseen tangible advantages. Even if there is no PMO, at the

end there is a tool (BIM-Q) that captures user requirements and turns them into a quality control process applicable

to design alternatives expressed in IFC. Besides, the presented approach is reusing existing standards and speci-

fications and therefore also enables to integrate available tools.

More precisely we introduce a layered approach that differentiates between different kinds of model checking. Each

layer requires own checking knowledge and is typically managed by different authors or standardization bodies. It

represents a generic solution and is based on principles adopted from the IDM/MVD methodology defined by build-

ingSMART. It is expected that it is a more flexible and practical approach that more easily can be adopted by the

industry, also because it is in line with ongoing standardization efforts. .

The focus of developed specifications and prototypes is on collaboration support, more specifically on checking

data exchange requirements that represents one layer in the proposed approach and supports information sharing

between stakeholders. A main aspect is completeness of information derived from specific needs of design pro-

cesses. Based on the presented approach, the sender and receiver of information will be able to check if all agree-

ments are fulfilled or if some data is missing. They can use the same specification and neutral checking tools to

validate results, ideally before submitting requested data to the receiver. This will help to reduce “requests for infor-

mation” due to incomplete datasets.

Technically, main research questions have been: (1) how to do neutral model checking based on open BIM; and

(2) how to capture and manage exchange requirements. mvdXML was selected as a basis for further developments,

which so far had been used for documentation purposes only. STREAMER started to use mvdXML for model

checking and was contributing to a new release published in spring 2016. By following this standardization path it

is expected that the chosen approach is leading to better acceptance by the industry. Besides working on technical

specifications another challenge was to adequately capture domain knowledge that is normally discussed using the

language of domain experts. STREAMER decided to capture and manage both types of specifications in order to

support later maintenance where it might be necessary to reuse, revise and update requirements.

The developed approach was validated for three data exchange scenarios: (1) client requirements for developing

an initial design (PoR data), (2) basic room layout data to be used for basic energy simulation and (3) energy

simulation results to be used for design evaluation and further design detailing. Practical tests have been carried

out by the four STREAMER example projects using developed prototypes but also commercial tools. They show

existing variety of model checking and necessary efforts to harmonize data flows.

Results of task 5.1 show how definition and checking of exchange requirements can be done. The developed ap-

proach is in line with buildingSMART developments and provides a sound basis for further specification work. Pre-

sented mvdXML specifications are still under revision and will be extended to reflect changes and extensions of the

data flow. Ideally, requirements for the different energy simulation tools as well as expected result set are fully

harmonized and thus independent from used tools. Such neutral specifications could then be input to further stand-

ardization activities.

List of acronyms and abbreviations
 ADE: Application Domain Extension

 API: Application Programming Interface

 BCF: BIM Collaboration Format

 BIM: Building Information Modelling

 BPMN: Business Process Modelling Notation

 bSDD: buildingSMART Data Dictionary

 CAAD: Computer Aided Architectural Design

 CB-NL: Concept Library the Netherlands

 CityGML: City Geography Markup Language

 CMIS: Content Management Information System

 CMO: Concept Modelling Ontology

 CSV: Comma-separated Values (file format)

 DST: Decision Support Tool

 gbXML: green building XML

 GIS: Geographic Information System

 GML: Geography Markup Language

 HTTP: Hypertext Transfer Protocol

 HVAC: Heating, Ventilation, Air Conditioning

 EDC: Early Design Configurator

 EPSG: European Petroleum Survey Group

 IDM: Information Delivery Manual

 IFC: Industry Foundation Classes

 IFD (1): International Framework for Dictionaries

 IFD (2): Industrial, Flexible and Demountable Building (Dutch standards)

 JSON: JavaScript Object Notation

 LOD (1): Linked Open Data (well-known in the semantic web community);

 LOD (2): Level of Detail/Development (used in the AEC industry)

 MVD: Model View Definition

 NCM: National Calculation Method

 OGC: Open Geospatial Consortium

 OWL: Web Ontology Language

 REAP: Rotterdam Energy Approach and Planning

 RIF: Rule Interchange Format

 PMO: Product Modelling Ontology

 PoR: Programme of Requirements

 RDF: Resource Description Framework

 SACS©: System for the Analysis of Hospital Equipment

 SKOS: Simple Knowledge Organization System

 SPARQL: SPARQL Protocol And RDF Query Language

 STEP: Standard for the Exchange of Product Model Data

 SW: Semantic Web

 SWOP: Semantic Web-based Open Engineering Platform

 SWRL: Semantic Web Rule Language

 Turtle: Terse RDF Triple Language

 URI/URL: Uniform Resource Identify/Locator

 UTM: Universal Transverse Mercator

 W3C: World Wide Web Consortium

 XML: eXtensible Markup Language

 XSD: XML Schema Definition

Definitions

Building Information Modelling (BIM):

A digital representation of physical and functional characteristics of a facility. A BIM is a shared knowledge re-

source for information about a facility forming a reliable basis for decisions during its life-cycle (further information

see chapter 1.3).

Ontology:

Ontology’s are the structural frameworks for organizing information and are used […] as a form of knowledge rep-

resentation about the world or some part of it. (Wikipedia1)

Syntactical compliance:

Compliance with the file format, lowest level of model checks relevant for file-based data exchange (further infor-

mation see chapter 2.2).

Structural compliance:

Compliance with a given data format or ontology. The type of checks depends on the used modelling language

and may enables to do encode sophisticated model checks (further information see chapter 2.2).

Data exchange requirements:

Checks completeness of data required by a specific process, thus typically linked to workflow and task descrip-

tions (further information see chapter 2.2).

Model consistency:

Fundamental checks of proper model semantics (further information see chapter 2.2).

Design rules:

Recommendations for a good design that may be prioritized or overruled (further information see chapter 2.2).

Regulations:

Rules with a legal background that must be satisfied to be built (further information see chapter 2.2).

Project specific client requirements or PoR:

Requirements for a specific building that are defined by the client (further information see chapter 2.2).

1 http://en.wikipedia.org/wiki/Ontology_%28information_science%29 (accessed: 2014-01-20)

http://en.wikipedia.org/wiki/Ontology_%28information_science%29

Contents

PUBLISHABLE EXECUTIVE SUMMARY 3

1. INTRODUCTION 10

1.1 Goals 10

1.2 Vision 10

1.3 Problem Statement 10

1.4 Challenges 11

1.5 Followed Approach 11

1.6 Organisation of the Deliverable 13

1.7 Relationship to other work in Streamer 13

2. STREAMER FRAMEWORK FOR INFORMATION MANAGEMENT AND QUALITY CONTROL 15

2.1 The big picture and overall workflow 15

2.2 Types of model checking and the proposed layered approach 20

2.3 How to capture checking knowledge 23

3. SPECIFICATIONS FOR CAPTURING QUALITY CONTROL KNOWLEDGE 25

3.1 Knowledge encoded in an ontology 25

3.2 Exchange requirements 26

3.3 mvdXML 26

Concept templates and their configuration 28

Checking of exchange requirements 28

3.4 Design rules 29

4. CAPTURED EXCHANGE KNOWLEDGE 30

4.1 Program of Requirements exchange requirement 30

The Label approach 30

Required data 30

Definition and exchange of PoR 31

PoR data checking 31

4.2 EDC to Energy simulation 34

CENtool 35

VABI Elements 35

Trnsys 36

SBEM 36

ENERGY+/SIMERGY/DESIGNBUILDER 37

4.3 Energy simulation to Decision support tool 38

CENtool 39

VABI Elements 39

Trnsys 40

SBEM 41

ENERGY+/SIMERGY/DESIGNBUILDER 42

4.4 Decision support tools to Modelling tool 43

Further data processing with Revit 43

ArchiCAD – Careggi 46

5. PROTOTYPE IMPLEMENTATION 47

5.1 Requirements Capturing with BIM-Q 47

Need for a shared, web-enabled requirements management tool 47

Set-up of reusable concepts 47

Configuration of exchange requirements 48

IFC mapping definitions 49

Reporting and mvdXML export 50

5.2 mvdXML plugin for XBIM 50

User interface development and collaboration workflow 51

5.3 eveBIM 51

5.4 Checking in the Eearly Design Configurator 52

Import and checking inside the EDC 52

Export 53

6. CONCLUSION 57

REFERENCES 59

Literature and Standards 59

APPENDIX 61

mvdXML for PoR 61

mvdXML for PoR, EDC and Energy Simulation 72

1. Introduction

1.1 Goals

The goals of this task 5.1 has been defined (1) To build a knowledge base on ontology work in the domain, and

present a robust framework for the practical implementation by the design team, stakeholders, building occupants;

(2) To use this knowledge base to develop an ontology-based energy information system and associated tools for

design energy-efficient buildings and districts, which will lead to ontology enabled interoperability; and thus, (3) To

proof the eligibility of ontologies in the preliminary design stage of both new and retrofitted buildings.

1.2 Vision

As Streamer looks into research in accordance with practical needs, the interest in ontologies is driven by the

domain ontology, i.e. the need for conceptualizing, organizing, and stating knowledge that is essential to energy-

efficient hospital design using modern BIM and GIS technologies. Abstract philosophical and upper ontologies are

therefore out of scope.

1.3 Problem Statement

BIM, is now mainly understood as a methodology to design, construct and maintain facilities using shared infor-

mation assets with latest software tools and services in a more collaborative environment.

A commonly accepted definition is:

 Building Information Modelling (BIM) is a digital representation of physical and functional characteristics

of a facility. A BIM is a shared knowledge resource for information about a facility forming a reliable basis

for decisions during its life-cycle; defined as existing from earliest conception to demolition. A basic prem-

ise of BIM is collaboration by different stakeholders at different phases of the life cycle of a facility to insert,

extract, update or modify information in the BIM to support and reflect the roles of that stakeholder.

(NBIMS2).

The “shared knowledge resource for information about a facility” and in particular the “shared knowledge resource

about energy-efficient hospitals” will therefore set the maximum boundaries for developing and using ontologies in

Streamer. It is, however, still a very comprehensive and large boundary. Thus, the overall focus still needs to be

limited.

One particular aspect of applying BIM is to focus on the “I” in B”I”M - the information. BIM is essentially information

management for construction and operation projects. Information has to be managed through the whole life-cycle.

In that life-cycle the same piece of information (e.g. the thermal performance of the facade or the total u-value of

the roof plate, etc.) is often created several times independently by several participants using their own software

tools. Confusion arises not only by re-entering of the values (where also the errors occur here), but also by different

naming conventions or by different degrees of certainty of the provided values.

The management of the information thereby need to include:

2 National BIM Standard – United States. National Building Information Model Standard Project Committee, http://www.na-

tionalbimstandard.org/faq.php#faq1 (accessed: 2014-01-20)

1 Stating the information requirement specific to either a life-cycle phase, or to a particular task (what has to

be delivered, by whom, when and in which level of detail or certainty),

2 Creating the information (when creating the information as property for a model element in a BIM authoring

tool, which template is used, how is it named, does it comply with the information requirement),

3 Comparing the information (e.g. compare the “as required” room areas within the space program with the

“as designed” area values of the design alternatives created by the designer),

4 Validating the information deliveries (e.g. make an automatic completeness check, that the BIM data within

the virtual building model deliver by the architect or engineer has all required properties with values within

an acceptable value range),

5 Quality checks as extended validation services (e.g. checking against building code or other design and

engineering rules),

6 Exchanging the rich information models between project participants in open standards (such as IFC and

CityGML) to prevent re-entering of information.

These problem statements lead to the following challenges that can be expressed by research questions.

1.4 Challenges

Potential user related questions need to be answered:

 What are the benefits to hospital clients and other stakeholders, if BIM / GIS with proper information man-

agement is used in new design and retrofitting of hospitals?

 Is there a common understanding among hospital clients, designers and contractors about the purpose

and need for BIM information requirement management?

 Is it ‘Level of Detail’, or ‘Level of Development’, or ‘Level of Definition’, or how are BIM information require-

ments stated and communicated between hospital clients and designers or contractors?

 Why are current techniques to develop BIM guidelines insufficient – or is this deemed to be sufficient if

stated using conventional spreadsheets (as in Excel)?

Potential technology related questions need to be answered:

 Can semantic web technology and languages, such as OWL, be efficiently used to support BIM based

information management, are those technologies robust enough, can it be proven to be realistic in time

and budget?

 Can existing solutions and techniques, such as the IFC and cityGML, be integrated with results from on-

tology works (in particular semantic web technologies) without reinventing the wheel?

 Can emerging technologies to formalize BIM data delivery and validation, such as mvdXML, be used and

enhanced, and how could it benefit from semantic web technologies?

 Can BIM validation and rule checking be enhanced? How does it perform compared with existing solutions,

such as Solibri Model Checker, BIMserver.org, etc.? Can those tools be enhanced and integrated into

such a solution?

1.5 Followed Approach

The development plan for T5.1 include (see Figure 1):

 Analysis of the state-of-the-art in ontological research and neighbourhood developments (information mod-

elling and standardization, rule-based assistance and validation),

 Setting real-life end-user scenarios for applying such ontologies to energy-efficient hospital design and

retrofitting,

 Defining the specification for applying / enhancing existing open standardization frameworks IFC and

CityGML to satisfy the end-user scenarios by utilizing results from the ontology work

 Implementing a prototype to validate the approach and to be used within the Streamer demonstrators

Figure 1: Structure of T5.1 (cross-links to other tasks and work packages are not shown)

The previous deliverable D5.1 covers the state of the art analysis and the identification of relevant end user sce-

narios and recommends specifications and existing early prototypes. This deliverable D5.2 on “Semantic Web

based PMO (Product Modelling Ontology)” will focus on the chosen specifications and the actual prototyping of

solutions. It has been concluded in the state-of-the art analysis that a hybrid approach shall be followed that reuses

and extends current BIM/GIS developments. A main challenge that has been identified is information management

that is checking if provided information fulfils expected requirements and constraints. It is a very knowledge intensive

task, still mostly done manually. We also decided to follow the IDM/MVD methodology suggested by buildingSMART

to be in line with ongoing standardization efforts. The two sub tasks that are in scope of this deliverable include:

Subtask C: Specifications

The specific challenge in developing an IDM/MVD for model checking is to capture requirements in a semi-formal,

but still flexible and user-friendly way that can be linked to a data structure like IFC. Ideally, there are templates that

can be configured to represent data requirements as outlined in the D5.1. The specific challenges for the specifica-

tion subtask are:

 identify typical data requirements – to be identified and extracted from other deliverables

 capture the data requirements in a semi-formal (re-usable) structure (requirements ontology)

 provide mapping definitions to IFC based on mvdXML templates

 configure those definitions to exchange requirements being relevant for specific tasks

Following this solution approach we also expect to identify shortcomings for the applicability of mvdXML. This may

relate to the expressiveness and clarity of the used rule grammar, the configuration approach and the level of

reusability. This may lead to extension approaches for mvdXML to be discussed within buildingSMART.

Sub task D
„Prototyping“

Sub task C
„Specifications“

Sub task A
„Analyze state-of-the

art in ontologies“

Sub task B
„Use case scenarios

from hospitals “

Deliverable 5.1

Deliverable 5.2

WP 5 Task 5.1

Hybrid approach

Subtask D: Prototyping

Prototypical solutions shall be implemented to support the definition, management and use of developed checking

specifications. Main developments activities are related to the following features:

 support requirements capturing that is to be exported to mvdXML to enable model checking

 improve and extend the mvdXML checking possibilities

 provide reporting functionality about identified issues using the BCF format

1.6 Organisation of the Deliverable

This chapter gives a short introduction to task 5.1. Content has been taken mainly from the Description of Work and

our last deliverable D5.1. It was updated and shortened to focus on work presented in the D5.2.

Chapter 2 introduces the STREAMER framework for information management and quality control. Based on the

state of the art review and decision taken in earlier it provides a high-level overview about the proposed approach.

It takes into account results of other work packages and shows how this work fits into the overall research of the

STREAMER project. It also introduces the main work- and data flow as well as important definitions related to model

checking in order to clarify the scope of developments. Chapter 3 provides technical details about checking of

exchange requirements as proposed and developed in this task. It is focusing on mvdXML as a neutral and stand-

ardized solution for BIM information management. Chapter 4 describes the captured knowledge that is relevant for

checking exchange requirements for the processes described in chapter 2. It also shows the differences between

the examples discussed in WP7, which are mainly caused by the use of different tools and, in case of retrofitting

scenario, reuse of existing building data. Chapter 5 describes the prototype implementations. They not only support

model checking but also the definition of exchange requirements as wells as the management of identified issues.

Chapter 6 gives a conclusion of the presented work. Technical details of the developed checking specification is

attached in the appendix section.

1.7 Relationship to other work in Streamer

There are several relationships to other tasks and work packages. Most important relationships are shortly men-

tioned here. More details are given in the next chapters.

WP1 and WP2 provide input to our exchange requirements from an engineering point of view, whereas WP4 defines

the boundaries for collaboration and data management, in particular the relevant work- and data flow (see chap-

ter 2). They gave input and feedback from domain experts who shall use our methods and tools. WP5 and WP6

are dealing with technical specifications and prototype developments. T5.2 develops solutions for shared data man-

agement and communication, and T5.3 is encoding design knowledge. They are an essential part of the overall

framework for BIM information management and quality control. WP6, namely the Early Design Configurator is also

implementing checking solutions for exchange requirements, which partially overlaps with the generic and neutral

mvdXML-based solution developed in T5.1 (see chapter 5). WP7 shows project-specific boundaries, mainly coming

from used tools and supported exchange formats and, in case of retrofitting available building data (see chapter 4).

1.8 Changes to the DoW

Based on our state-of-the art analysis carried out in the beginning of task 5.1 it was decided to adjust the way how

to achieve described goals. A major change has been the decision to reject the idea to develop a Product Modelling

Ontology using Semantic Web technologies. The reasons are explained in chapter 3.1 and the previous deliverable

5.1. This change is reflected in the extension to the original title of the deliverable.

Also, it became obvious that there is a strong need to clarify the connections to developments from other work

packages. This was leading to the decision to work on a high-level overview about the data management framework

as presented in chapter 2. Accordingly, the reader should be aware that the content presented in this deliverable

went through a revision and has changed compared to the original DoW.

2. STREAMER Framework for Information Management
and Quality Control
BIM information management and quality control have been identified as main challenges for task 5.1 activities. By

nature, this task is influenced not only by technical but also by organisational, regulatory, contractual and other

aspects. Dealing with those aspects is therefore not only targeting technical questions such as how to encode

relevant knowledge as being in focus of this task but must also consider how to identify and maintain that knowledge

in order to be transparent and maintainable. This chapter presents the STREAMER framework for BIM information

management and quality control that has been developed taking into account existing tools and standards as well

as the insights and knowledge gathered in other STREAMER work packages. It also explains why we have chosen

to follow a hybrid or layered approach instead of developing a monolithic, highly specialized new STREAMER

Prodcut Modelling Ontology.

2.1 The big picture and overall workflow

The STREAMER project is based on the concept of Building Information Modelling that is intended to enable better

collaboration throughout the whole lifecycle of a building. It means to use a virtual representation of the building

that contains all relevant information in an agreed data format. But it not only enables to share and reuse information

but also to check if contributions coming from different domain experts fit together and meet the client and other

requirements. However, the BIM does not have to be complete or consistent all the time as there will be intermediate

design stages to test design alternatives for instance focusing on a specific aspect like energy consumption, user

comfort, life-cycle costs etc. In order to find the best solution for the building the design activities have to be priori-

tized, coordinated and controlled. The design and decisions making processes for new and refurbished hospitals

are discussed in WP1 (see D1.4 for retrofitting scenarios), WP2 (D2.3 & 2.6 for decisions matrices regarding MEP,

envelope and configuration solutions) and WP4 (D4.1 for collaboration and information management) of the

STREAMER project.

While WP3 is analysing relevant KPIs and the interaction between strategic, tactical and operational level activities

WP4 is focusing on workflow aspects including a discussion of involved stakeholders and their responsibilities

throughout the programming, design, construction and operational stages. BIM is supposed to change traditional

processes and therefore have to be thoroughly redesigned, in particular when it comes to information exchange

that in an optimal case enables a fully integrated design process that for instance is a prerequisite to check hundreds

of design alternatives to find the best solution as needed in the Rotherham retrofitting example (see WP7).

The process definition in WP4 also considers available tools that in many cases are related to the scope or the type

of the project. For example room programming of a hospital being characterized by many special healthcare re-

quirements and expensive medical equipment is asking for different tools than a normal office building. STREAMER

is focusing on hospitals and energy efficient design. The examples presented in WP7 show that there can be many

different project setups. There are new and refurbished buildings, different regulations due to being located in dif-

ferent countries or another tool setup in particular for the room programming and energy simulation. In addition to

the project-type based configuration, there are project specific settings that not necessarily are regarded as BIM

data. Namely client requirements such as KPIs and the room programming as well as organisational aspects such

as workflow definitions including schedules and responsibilities are to be mentioned here. Those settings are typi-

cally first action items in a project. Figure 2 and Figure 3 provide a high-level view on the settings being relevant for

the project management as discussed in more detail in deliverables of WP3 and WP4 (D3.6, D4.1). Those settings

then control the dataflow between participants relying on different kinds of ideally checkable requirement specifica-

tions that are discussed in the next section. The smallest piece in the data management activity is the execution of

a particular task by a particular stakeholder done with help of some software. A task typically imports some (BIM)

data, is then processing the data using additional task specific knowledge including the experiences and decisions

by the client and finally is exporting the processed data back to the BIM repository. This description of task fits to

many activities in a project, even the initial project setup can be treated as tasks with input and output data.

Figure 2: Schematic representation of the Streamer project stages and involved stakeholders in the decision-mak-
ing process (see D4.1)

Figure 3: The hierarchy level of the STREAMER decision-making organization (see D3.6)

When focusing on tasks and its input and output data, the principle task sequence as shown in Figure 4 can be

identified. It also shows the knowledge added by STREAMER as well as the data that is exchanged between those

tasks. Information management means to control and check the produced data in order to make sure that all ex-

pected quality criteria are fulfilled. For instance if energy simulation results do not include the annual energy con-

sumption, then a key figure is missing for the design evaluation task. Some data might be optional if it can be

extracted from product catalogues or is given by default values. Such default data is for instance available in the

CEN simulation tool, which applies window default properties for the U-value, solar energy transmittance and heat

capacity that for instance are not exported by the Early Design Configurator. The different aspects for checking data

are discussed in chapter 2.2.

Figure 4: Principle task sequence for finding energy efficient design solutions. Further types of simulation like LCC
simulation or comfort checks might be done in parallel to energy simulation to be able to evaluate all KPIs.

PoR (CSV)

BIM (IFC)

BIM + Results (IFC, ..)

Room Programming

Early Design

Design Evaluation

Design Rules

MEP-System &
Fabric System databases

Vocabulary for Spaces,
Functional Areas and Labels

Energy Simulation

STREAMER Knowledge Task Sequence Data Exchange

The task sequence for retrofit is similar but slightly different. It begins by federating all the available information

sources (see Figure 5). Because of their diversity, a global dictionary is needed to map the attribute names into

line, and a local (project) dictionary is needed to bring specific zone and system names into agreement.

Options for system and fabric upgrades are selected by expert users. The STREAMER systems catalogue is used

to associate appropriate performance attributes.

The STREAMER, IFC and UK SBEM NCM vocabularies are used to prepare each option model for simulation and

costing. The results are merged into the model for design evaluation.

Figure 5: Task sequence for the Rotherham retrofit use case.

The principle task sequence is integrated in the decision-making process as shown in Figure 6. At the Strategic

level there are decisions regarding the goals of the project, definition of the KPI’s and its weight factors as well as

the organization of the communication. Accordingly, “Room Programming” is seen as a strategic task that needs to

be done in the beginning but may change when getting new insights by the “Design Evaluation” and may starts a

new design iteration. On the sub-ordinate level, the Tactical level, the technical alternatives are developed and

designed. It is based on design rules that for instance are defined for the layout of rooms in a hospital. The “Early

Design” but also the selection of design rules, if project specific, are seen as tactical tasks. At the third and last

level, the Operational level, the engineering analyses such as the energy calculation and the MEP solutions are

designed. The results of those tasks provide the basis for decisions in the tactical and strategic level, which will

collect, compare and weight the different results of a design alternative.

Task SequenceSTREAMER Knowledge Data Exchange

Vocabulary for Spaces,
Functional Areas and Labels

Global Dictionary
Project Dictionary

MEP-Systems & Fabric System
Databases

Departmental Zones (CSV)

Campus block model (IFC)

Departmental
fabric and MEP system options

(CSV)

Metering results (CSV)

Merge
(IFC)

Interactive selection
(web-page)

Design Evaluations

Campus-wide Systems (CSV)

BIM + Results (IFC, …)

Energy Simulation

Figure 6: The iterative decision-making process and the inter-level connections (see D3.6)

A more technical view on the task sequence is shown Figure 7. It not only shows the used tools but also two options

that can be used for central data management offering additional collaboration features. The process is the follow-

ing:

 Step 1: The Briefbuilder tool enables to specify the program of requirements and is used in the Rjinstate

example. It is a commercial tool that can export the PoR data to a CSV format (see D1.6). Alternatively, a

normal spreadsheet tool like Excel can be used based on a STREAMER spreadsheet template (more details

in chapter 4 of this deliverable).

 Step 2: The Early Design Configuration (EDC) developed in WP6 produces various building design pro-

posals trying to find an optimal solution for the defined requirements. It generates an IFC file that is uploaded

to the central data storage.

 Steps 3 and 4: Energy simulation is done with different tools, depending on the example hospital. The tools

export the results either back to the IFC file or provide separate result sets using a proprietary data format.

 Step 5: At the end of the workflow the Decision Support Tool enables to compare results and to evaluate

against the defined KPIs.

At any time the BIM Collaboration Format (BCF) can be used to trigger a discussion about any part in the BIM. It is

an additional information on top of the IFC model that is based on issues, similar to issue tracking systems in

software development. Each issue contains relevant details like a view point, screenshots, additional notes including

tracked replies and also BIM snippets being able to share parts of the BIM. The BCF is an open XML file format

developed by buildingSMART to support workflow communication in BIM processes. Any IFC viewer with BCF

support like for instance eveBIM from the partner CSTB, the IFC Explorer from KIT and many more can read and

write BCF and thus can be integrated into our scenario. Similar to BIM files and other documents the BCF issues

can be management by the CMIS or by the CSTB document server. For this, an API needs to be instantiated from

each client tool in order to communicate with the server. Additionally, the CSTB document server offers a specific

function for BCF support that allows to store the link between IFC files and their corresponding BCF annotations.

While BCF and the shown infrastructure and tools enable to discuss and resolve issues the crucial questions is how

to specify and control the quality of exchanged information between participants and the different levels. To answer

this question is the main topic of this deliverable.

Figure 7: Developed prototypes and used commercial tools in the principle task sequence and data flow showing

the use of the central data management environment through the PLM-API

2.2 Types of model checking and the proposed layered approach

Model checking is a key functionality for BIM information management. It enables to identify missing or wrong data.

Ideally, model checking is done systematically whenever data is imported and exported to ensure the expected

level of quality. Additionally, it has to be an automatic and reliable process in order to be able to deal with the

amounts of data shared with BIM, in particular if dealing with complex buildings like hospitals. The principle of model

checking is simple: a BIM data set is checked against a set of rules that must be satisfied. If a rule is violated, then

an error message is created that for instance could be reported using BCF issues as presented in the previous

chapter. While the principle of model checking is clear misunderstanding exists about what is checked in that pro-

cess.

In order to reduce misunderstanding about model checking a layered approach is suggested that differentiates

between the following types. Please note that the differentiation criteria is not always clear from a semantic point of

view so that in some cases the decision is simply based on the fact where or how checking rules are encoded and

who is responsible for maintaining the rule set.

 Syntactical compliance to the file format:

This is the lowest level of model checks and is based on the file serialization format. Examples are for

instance the STEP physical file format (SPFF by ISO 10303-21) that is mainly used by IFC, or the eXtensible

Briefbuilder
Rijnstate

Early Design
Configurator

KIT

Vabi
DWA

Trnsys
CSTB

Decision
Support Tool

DEMO

Energy +
BEQ

Design Rules

DJG / DWA / CEA

MEP-System &
Fabric System databases

WP2 Leader

Vocabulary for Spaces,
Functional Areas and Labels

All

SBEM
AEC3

EN ISO 52016
TNO

LCC
DEMO

Quality Tool
TNO

1

P
LM

 A
P

I

Document
server

CMIS

2

3

4

5

.bcf

CSTB

.ifc

.bcf

.ifc

Markup Language (XML by W3C) used CityGML, gbXML and many other recently developed standards.

Such errors are typically reported by the import software may failing to parse the file due to a wrong file

structure, wrong references, incorrect escape sequence etc.

This level of model checks is typically not recognized by the user as the tools normally export files with a

correct syntax.

 Structural compliance to the data format:

The data file not only has to follow the used syntax but must also follow the structure defined by the under-

lying data schema. Each data schema like for instance IFC or CityGML define a set of entities, attributes

and references that define a structure representing agreed elements that can be used for data exchange.

For instance a wall is represented in IFC by an IfcWall entity and can have a given set of information like

name, description, placement, geometry etc. A data schema can contain a lot of checks, not only against

the use of correct entity and property names, but also the cardinality of references (e.g. setting if something

is mandatory) or simple consistency checks. Structural errors are typically avoided by the file extension like

*.ifc, but may pop-up if incompatible versions are used (e.g. IFC2x3 instead of IFC4). Such kinds of checking

rules are defined and maintained by the standardization body and will normally change with a new release.

 Data exchange requirements for processes3:

A BIM data structure like IFC is per se neutral to processes because it should be applicable for different data

sharing scenarios. Accordingly, mandatory data is restricted to the absolute minimum by the data schema.

It means that if an IFC data file is compliant with the data schema it not necessarily contains the data that is

required for a particular process. This needs to be defined as a so called Exchange Requirement that is part

of an Information Delivery Manual (IDM) and thus linked to processes. It defines what data has to be deliv-

ered for a particular processes. For thermal analysis it could be defined that each space must have space

boundaries, occupancy profile information, heat gains, etc. If that data is missing, the thermal behaviour of

the building cannot be analysed, or values may be defaulted or must be collected first. An Exchange Re-

quirement may also restrict allowed ranges of values or can include implementer agreements that clarify the

use the data schema, but it does not contain consistency checks that require further analysis of the data.

Checking that all space boundaries of a space are closed and have the right orientation is not part of an

Exchange Requirement. An Exchange Requirement for IFC-based data exchange can be encoded in the

mvdXML format, which is an open standard defined by buildingSMART.

Consistency checks:

There are many examples of fundamental inconsistencies that can happen in a BIM model. In some cases

like clash detection they might been seen as an own task for instance to coordination different domains, in

particular if user interaction is necessary. There are other cases where data is not properly updated after

design changes due to having redundancies in the data structure, or maybe there are wrong settings for

instance in the structural analysis system that would lead to an undetermined behaviour of the load transfer.

Thus, consistency checks require deep engineering knowledge and often require more complex analysis

than checking data requirements. They are typically implemented in the used design tools and is something

that is done as part of the task.

3 or: completeness of model

 Design rules:

Design rules are examples of recommendations that may be prioritized or overruled at some point. Other

recommendations may come from specialist experts, insurers or best practice documents. Other examples

include environmental assessment schemes where points are offered and then awarded for selected as-

pects, and those points contribute to a weighted (balanced) scorecard. The final score is then graded se-

mantically, for example from excellent down to poor. Examples of design rules are discussed in task 5.3 and

WP6. They are implemented in the Knowledge Editor and the Early Design Configurator. They are based

on accepted rules for good design for instance based on functional requirements and are dealing with all

aspects of a building. They can include personal preferences and specific expert knowledge. Design rules

are typically defined for a type of buildings defining the applicability of the rules. They should influence design

decisions and have an impact to the KPIs. Accordingly, they are typically applied when working on the de-

sign. When submitting the design proposal (export the result of a task) the domain expert is responsible to

make sure that all design rules of his domain are fulfilled.

 Compliance with regulations:

Regulations are similar to design rules, but have a legal background and may depend on the location of the

building, jurisdiction and date. There are for instance country specific regulations for fire escape routes.

Compliance with regulations is checked by the responsible authority in order to get the necessary approval.

It is of course important to make sure that all regulations are fulfilled before submitting the proposal to the

checking authority. Several efforts have been undertaken to encode regulations as checkable rules for BIM

data. However, there are still a number of research questions how to deal and manage regulations in an

efficient and transparent way.

Regulations, requirements and Recommendations are the subject of a buildingSMART International paper

being developed for future standardisation. These types of checking must handle complex applicability, se-

lection and exceptions alongside to qualify the requirements. So far three layers have been identified, mark-

up which annotates the original documents with referencing and grammatical roles, interpreted layer, where

formal logical rules are documented, and operational layer where the rules are presented in a form that

universal rule engines can process. mvdXML (see also chapter 3.3) is effectively an interpreted layer which

is operable by specialised applications.

 Check against the Program of Requirements:

The Program of Requirements is an example of project specific requirements that are defined in the begin-

ning of the project by the client. It means that the generic functionality for comparing client requirements with

the actual design can be offered by tools, but the requirements representing the “checking rules” need to be

defined and managed within the project. Defining the PoR can thus be seen as any other task in the project

producing some “BIM data” representing client needs. As for any other data it needs to be checked if all

information is according to the checking rules for PoR data. Ideally, a PoR tool such as dRofus or Briefbuilder

enables to compare client needs with the actual design solution.

The focus of the task 5.1 is on managing and checking data exchange requirements based on the mvdXML format.

It is not yet done in practice and can significantly improve data exchange between participants.

2.3 How to capture checking knowledge

The principle of model checking is clear and simple. However, there are a couple of challenges for defining and

maintaining the checking rules. This chapter is discussing criteria for capturing checking knowledge.

 Openness and transparency:

Model checking might be offered as a black box without the possibility to verify the used rule set. If not

properly documented, there is a risk that a rule set may not be applicable to a give design and thus is

producing wrong results. Ideally, the checking knowledge is open so that it can be reviewed and may even

be adjusted by the users. It also enables to use different checking engines may offering different features

for checking or reviewing the model. An argument against openness is to protect specific expert knowledge

because it is part of their business model. Accordingly, such knowledge may not be available free of charge.

A key element of openness is the need for acceptability, which depends mainly on a clear connection be-

tween the source requirements, usually a written document, and the results. The intervention of derivative

interpretations and re-keying reduces credibility and robustness.

 Usability:

Encoding of checking rules can easily lead to complex expressions or programming code. Such code is

rather difficult to read for domain experts who have the knowledge about checking rules. They are typically

not familiar with used expressions and the details of the underlying data structure. Ideally, the code can be

reviewed on a more abstract level or for instance is based on a Domain Specific Language (DSL) that fits to

the terms and scope of the domain. The design rules developed in WP6 are a good example of using typical

adjacent relationships of spaces to encode the rule or checking knowledge. Each of those relationships is

then implemented in some programming code but still easily configurable.

A checking application must be able to express its results in terms of reasons for failure or as means to

resolve that failure. In many cases there may be several alternative resolutions of varying difficulty (improve

the insulation, repurpose the space, reclassify the building, and relocate the project).

 Expressiveness:

The used rule language may not allow to specify a particular rule due to missing expressions. If for instance

mathematical functions are not supported then it is not possible to do rule checking that require the calcula-

tion of values. Thus, the main question when choosing the rule language is whether it can deal with all

checking rules or not.

 Decidability:

Statements like for instance available in the OWL-Full language may not be fully decidable thus leading to

issues when it comes to model checking. Somebody may just want to express some facts about the BIM

without dealing with its implementation. However, if a result is expected a proper rule must be defined, or

such features and rules must be ignored by the rule engine. A critical factor is the ability of applications to

handle True/False or True/unknown/False facts. Without the ability to handle unknowns and track their sig-

nificance, rule systems become information hungry and unwieldy.

 Performance:

Depending on the kind of check, for instance if done when importing a BIM file, checking results might be

needed in short time. In such cases the execution time becomes important as it otherwise would slow down

the work of the users. The most critical performance parameters besides the complexity of the rules are the

size of the model and the number of rules.

 Maintainability:

If rules or regulations change the implementation of the rule must be adjusted. If the code is well documented

and structured it is easier to identify the relevant code parts and to make necessary changes. It is a typical

software maintenance issue and thus should reuse principles and tools that are successfully applied in that

area. For instance, a modular software design and the use of a code versioning system as well as issue

tracking solutions are state-of-the art in the software development. An important decision when starting to

encode checking rules is the selection of a proper rule language that for instance supports a modular design

and the re-use of code parts. Another aspect is systematic testing, which is typically based on a well-defined

set of test cases that is used to verify the code. This for instance enables to easily identify negative side-

effects when changing code parts.

 Scalability:

Scalability describes the behaviour of model checking when new rules are added or the model size in-

creases. A solution may work properly for small BIM models, but fails for bigger models. Or a larger number

of rules becomes unmanageable. Scalability also affects the preparation of norms: given the rapid evolution

of norms such as regulations, requirements and recommendations, it must be possible to absorb new ma-

terial in a timely and efficient process.

3. Specifications for capturing quality control

knowledge

This chapter is discussing options to capture checking knowledge. As outlined in chapter 2.2 the focus in task 5.1

is on checking exchange requirements using mvdXML. The decision for using mvdXML is based on the agreement

to use the open and neutral IFC format for BIM data exchange. IFC already offers an ecosystem of tools that support

design, construction and maintenance processes. Thus, they can easily be integrated into the STREAMER design

process without further data conversion processes. IFC data sets, if available, can also be reused in the retrofitting

scenario. Other options like using the IFC modelling language EXPRESS or Semantic Web-based solutions like

OWL or RuleML have been disregarded based on our analysis results. However, this chapter will provide further

details of the selected solutions based on a layered model checking approach compared to a more monolithic

Product Modelling Ontology (PMO).

The chapter starts with describing the limitations of developing a PMO and then introduces to the knowledge that

is captured to support the STREAMER process, namely the Exchange Requirements defined by domain experts,

its representation as mvdXML as well as the design rules used by the Early Design Configurator (EDC).

3.1 Knowledge encoded in an ontology

The idea of a Product Modelling Ontology (PMO) was to provide a means to represent industry product models with

all their constraints about their assembly, their properties, their relations, etc., under the form of an extended ontol-

ogy. This idea dates back to the SWOP project (Böhms et al. 2008) that was proposing an OWL-based solution to

encode that knowledge. It was used and demonstrated as a semantic layer containing all the necessary knowledge

to generate valid design solutions and alternatives. Optimization techniques were then used to identify the “best”

options according to the selected objectives (see also WP6 and EDC developments). This is in line with the overall

goals of the STREAMER project.

After the state-of-the art review and further testing with OWL-based solutions (see D5.1) it was decided to follow a

hybrid approach, which is not only based on established standards and tools but also follows a more layered ap-

proach based on the types of model checking as described in chapter 2.2. This solution is expected to be more

flexible and robust in particular for industrial needs, and is also in line with ongoing standardization efforts that are

actively supported by the STREAMER project. The followed approach is still based on file-based data exchange,

which means to use the STEP physical file format for IFC and the XML file format for other data structures like

CityGML. This enables to easily integrate available tools into the STREAMER workflow because no data conversion

or re-implementation is necessary. Both, the data standards and related file formats cover the knowledge of the first

two basic checking layers. As file-based data exchange remains an important way of communication the quality

control of agreed data flows was identified as a fundamental issue to improve collaboration between stakeholders.

This hasn’t been a topic of PMO. The knowledge encoded in a PMO is mainly supporting individual design steps in

order to end-up with a consistent and good design. In STREAMER this layer is mainly handled by the design rules

developed in T5.3 and WP6. Additionally, capturing and maintaining relevant knowledge has been identified as a

fundamental topic that is supported by the various STREAMER developments, namely the BIM-Q tool (see chapter

5.1) and the Design Rule Editor (D6.1). Also, expressiveness of standard OWL, SPARQL, SWRL and available

tools was found to be too limited to semantically define design rules for instance requiring geometric calculations.

3.2 Exchange requirements

According to the Information Delivery Manual (IDM, ISO 29481-1) and Model View Definition (MVD) methodology,

the specification work follows subsequent steps and involves different stakeholders starting with a high-level view

on the business processes and goes down to software implementation details. The result of each step is an agree-

ment or technical specification that forms the basis for further communication and detailing.

Task 5.1 is focusing on the definition of exchange requirements. Accordingly, relevant processes, involved actors

and the data flow as presented in Figure 4 of chapter 2.1 are available as a reference. An exchange requirement is

for instance the data that must be generated in the process called Room Programming4. It is defined by domain

experts who have to describe what information must be defined in that process. They also have to agree on terms,

their meaning and the expected structure of required data. Lean thinking places the onus on the receiver to specify

their requirements, and the sender to support this requirement as far as they can. In case of PoR the task results

in a set of room types that are classified by criteria such as comfort, safety, hygiene class, accessibility and others

(Di Giulio 2015). For each of those classification criteria allowed ranges of values with their meaning have to be

defined. For instance, a room classified as “A4” means that it should be accessible for staff only. In many cases

existing classification systems can reused as a reference (for further details see chapter 4).

The structure of defined requirements may fit to other processes. Therefore, it is reasonable and recommended to

harmonize and reuse such specifications. If room type information is not only needed for space layout but also for

energy estimation it should be linked as a requirement to both processes. Traditionally, the main purpose of this

step is to prepare implementation of software interfaces, which means to translate the terms of domain experts to

a data structure like IFC. This step is done by modelling experts who are familiar with the data structure. For IFC-

based MVD developments it means to switch to the ifcDoc tool that enables to work on an mvdXML specification,

which will lose the link to the exchange requirements defined by the domain expert. The approach suggested by

the STREAMER project is to capture exchange requirements and the mvdXML configuration in the same tool (see

chapter 5.1).

3.3 mvdXML

With support of the STREAMER project the mvdXML 1.1 specification was published in spring 2016 (Chipman et

al.). It enables to specify exchange requirements of a Model View Definition (MVD). Besides a couple of minor

improvements and simplifications compared to the initial release 1.0 the most notable change is the enhanced

capability for model checking. This feature of mvdXML is becoming more and more interesting. However, the focus

is still on MVD documentation purposes for instance for creating the HTML documentation of the Design Transfer

and Reference View of IFC4 (see Figure 8). It is therefore an important specification document for software imple-

mentation. mvdXML can also be used for generating an IFC subset schema for checking structural compliance (see

chapter 2.2) and for data filtering and querying as required for the interaction with a PLM system (see task 5.2).

4 Or Program of Requirements (PoR)

Figure 8: HTML documentation for the Reference View of IFC4 generated with help of the ifcDoc tool and mvdXML

Depending on the usage of mvdXML (documentation or model checking) the definition has a different focus. How-

ever, the definition of an MVD is always similar. Main elements of each MVD are:

 ModelView:

one or more of those elements are normally included in an mvdXML file. It is part of the View element and

is the main container for exchange requirements and root concepts.

 ExchangeRequirement:

represents the data that is relevant for a use case, either for import, export or both.

 ConceptRoot:

represents a class of objects for which the same constraints apply. They are normally linked to entities that

are derived from IfcRoot, i.e. being a main testable element of an IFC model.

 Concept:

is part of a root concept and defines a constraint on applicable objects and how it is used in exchange

requirements.

 ConceptTemplate:

defines a unit of functionality that is used and configured by ConceptRoot and Concept elements. It is a

selection and basic configuration of IFC definitions that are required to implement a specific functionality

such as support of property sets, material layer definition or more complex data like BREP geometry.

Each of those elements is able to carry additional meta-data and descriptive text including multilingual support.

Concept templates and their configuration

An important design feature of mvdXML is to reduce the maintenance effort, which is based on the use of configu-

rable concept templates. A concept template defines one or more applicable entities and includes a set of rules that

each specifies a sub graph of instantiable attributes. Such sub graph is defined by attribute and entity rules and

always starts with an attribute of the applicable entity.

The concept template shown in the code example below is defined for all instances of IfcRoot entities and contains

two rules for the attributes Name and Description. Both rules define an additional (optional) rule identifier (RuleID),

which is a unique name used for further configuration. The code example also shows that an AttributeRule is fol-

lowed by (one or more) EntityRule that expand the sub graph.

The rule identifier is later used as a parameter in a logical expression to check existence, values, types, size of sets

or uniqueness. Accordingly, above shown example enables to configure both attributes, for instance to check for a

specific name or existence of a description. However, logical expressions in mvdXML are limited in their expres-

siveness in order to be as clear as possible both for definition and processing.

<ConceptTemplate uuid="c19ec186-9cfd-47fc-a4d4-9fb35008d04a" name="User Identity"

 applicableSchema="IFC4" applicableEntity="IfcRoot">

 <Definitions>

 <Definition>

 <Body><![CDATA[Code 020- ...]]></Body>

 </Definition>

 </Definitions>

 <Rules>

 <AttributeRule RuleID="Name" AttributeName="Name">

 <EntityRules>

 <EntityRule EntityName="IfcLabel"/>

 </EntityRules>

 </AttributeRule>

 <AttributeRule RuleID="Description" AttributeName="Description">

 <EntityRules>

 <EntityRule EntityName="IfcText" />

 </EntityRules>

 </AttributeRule>

 </Rules>

</ConceptTemplate>

Figure 9: Definition of a reusable ConceptTemplate for “Name” and “Description” attributes

Checking of exchange requirements

The principle for defining constraints is based on IF THEN statements. The IF-part is defined in ConceptRoot nodes

and determines the applicability to instances. In general IF-THEN statements put the IF ‘ASE’ THEN R. Applicability

narrows down the relevance of a rule. Selection expands it. Exceptions override the Requirement. The THEN-part

is defined by Concept nodes and defines the constraints that shall be applied to all applicable instances. In addition

to a “selection by type” (through the applicableEntity field) it is possible to define additional constraints. For instance

if all load bearing walls shall be checked then all instances of IfcWall with a property Pset_WallCommon.LoadBear-

ing = TRUE must be checked. Such additional constraints are defined in the <Applicability> section of ConceptRoot.

The mvdXML snippet shown below is checking instances of IfcBeam with the Name “Beam-206”. It is configuring

the concept template shown in the previous snippet.

<ConceptRoot uuid="00000035-0000-0000-2000-000000067001" name=" Beam-206"

 applicableRootEntity="IfcBeam">

 <Applicability>

 <Template ref="c19ec186-9cfd-47fc-a4d4-9fb35008d04a"/>

 <TemplateRules operator="and">

 <TemplateRule Parameters="Name[Value]='Beam-206'"/>

 </TemplateRules>

 </Applicability>

Figure 10: Configuration of “User Identity” for the selection of an IfcBeam instance.

The configuration of constraints works in a similar way; a concept refers to a concept template using its uuid. The

<Requirements> section then defines the link to exchange requirements and its expected usage. The configuration

of rule identifiers starts thereafter, which may be using nested statements logically combined by Boolean operators.

The mvdXML snippet below shows the configuration of a mandatory space property where only the two values “A1”

and “A3” are allowed.

<Concept uuid="00000003-0000-0000-0000-000000349910" name="Accessibility Labels">

 <Template ref="00000000-0000-0000-0001-000000000001"/>

 <Requirements>

 <Requirement applicability="import"

 exchangeRequirement="00000003-0000-0000-0000-000000000105"

 requirement="mandatory"/>

 </Requirements>

 <TemplateRules operator="and">

 <TemplateRules operator="or">

 <TemplateRule Parameters="Set[Value]='STREAMER_Labels_PoR' AND

 Property[Value]='AccessSecurity' AND

 Value[Value]='A1'"/>

 <TemplateRule Parameters="Set[Value]='STREAMER_Labels_PoR' AND

 Property[Value]='AccessSecurity' AND

 Value[Value]='A2'"/>

 </TemplateRules>

 </TemplateRules>

</Concept>

Figure 11: Definition of constraints for the “Accessibility Labels” defined by the PoR for spaces.

3.4 Design rules

The design rules developed in task 5.3 and WP6 are a way to translate and store different sources of knowledge

(e.g. expert knowledge, culture preferences, climatic preferences, personal preferences, client preferences, building

regulations or best practises) as relationships between two objects (see basic rule structure below). The rules are

encoded as a XML file and are used by the Early Design Configurator to develop a room layout for the early design

phase of a project. Accordingly, encoded design rules are actively used to generate design solutions whereas an

exchange requirement as developed in WP5 is giving feedback if all required data is included in a particular design

solution.

Object X with Attribute Z has relation I with Object Y with Attribute Z

Similar to mvdXML, design rules are captured in a separate file or database (independent from the tool). They are

typically used to fulfil some design activity and therefore are not incorporated in the information exchange. Only

dimensional and geographical relationships are bounded in the information exchange between tools. However,

design rules can and should be re-used in other (hospital) projects. If design rules are available in an open format,

they can be used as an additional evaluation resource in a later design phase, for instance to check the consistency

of a design option regarding the original requirements. In addition to the EDC and similar to the xBIM tool discussed

in chapter 5.2, the Design Validator developed in WP6 offers such neutral evaluation option that basically enables

to rate a design solution.

4. Captured exchange knowledge

This chapter describes the requirements that need to be checked for the exchange scenarios defined in chapter

2.1, namely data coming from the processes of room programming, early design and energy simulation. It will also

explain the tools that are used to define, consume and check the data.

4.1 Program of Requirements exchange requirement

The Label approach

The Program of Requirements (PoR) is developed to capture the requirements of a design. In the early design

stage not all information is available so that STREAMER has developed the label methodology. It means that re-

quirements are translated into more generic information containers: the labels. These labels represent semantic

information and are used by different tools. Accordingly, the meaning of the labels must be formalised and has to

be static throughout the design process.

The “comfort class” label for instance represents requirements for light, daylight, ventilation and design tempera-

tures. This label is first used to describe the wishes from the client regarding those aspects. Secondly they are used

as a way to produce a layout possibly by placing the rooms with daylight requirements next to the outer wall. A next

step is an early energy simulation where the simulation tool uses the design temperatures of the “comfort class”

label as an input for calculating the heating and cooling requirements. For all those different purposes the label

(value) needs to represent the same semantic information and must be used in the same way in each use case.

Therefore the labels are fixed and static throughout STREAMER.

One exception is suggested; that of an empty layer class. However, this label class is not yet included in the pre-

defined structure or EDC. But in some designs a free label category, not used by other programs, is preferable. A

realistic use of the “empty layer class” label is for instance when designing an Islamic health care district, where

there is need for a men/women separation within the hospital. The empty label class can be assigned for this

men/woman separation and used in design rules to group the rooms allowed for men only or women respectively.

The labels represent this semantic information only on that specific project and therefore cannot be interpreted by

other tools.

Required data

The PoR needs to contain the area of a room that is to be translated by the EDC into a physical object. The realised

floor area of an object is often not the exact area given in the PoR, but is within a certain range. For the application

of design rules as described in chapter 3.4 the naming of labels, room types and functional areas need to be con-

sistent. The design rules refer to the attributes of a room described in the PoR. Accordingly, it is recommended to

use the STREAMER language next to the labels also for the room types and functional areas (FA). Currently the

room types and functional areas do not contain any other semantic information than a description. Therefore, it is

possible that an experienced user could make customised names for FAs and room types, if this is also used in the

design rules. This approach could be useful in cases that do not fit into the standard “jacket” of STREAMER.

Another semantic use of the room types is the mapping of default labels to default room types. For fast development

and standardisation of the PoR, a default mapping is done for room types and labels in the D1.6. This default

mapping can be used to fill in a PoR as for instance done in the Rijnstate example with help of the software tool

Briefbuilder. For every room type default labels are given. Accordingly, when developing a PoR it is not needed

anymore to fill in all requirements for every room. This doesn’t mean the labels do not need a check or that a change

of settings is not possible. It is meant as a default setting that fits to most of the projects but not being a hard or

generic requirement.

The current STREAMER PoR contains the following objects and restrictions, where the bold text are the column

names that need to be used to be processed by the EDC (agreements will be reported in the deliverable D1.6):

1 RoomName: any text (string)

2 RoomType: list of allowed values (enumeration, see D1.6)

3 Amount: any integer value

4 Area: any real value

5 FunctionalAreaType: list of allowed values (enumeration, see D1.6)

6 BouwcollegeLayer: list of allowed values (enumeration), HF, H, O, I

7 HygienicClass: list of allowed values (enumeration), H1, H2, H3, H4, H5

8 AccessSecurity: list of allowed values (enumeration), A1, A2, A3, A4, A5

9 UserProfile: list of allowed values (enumeration), U1, U2, U3, U4

10 Equipment: list of allowed values (enumeration), EQ1, EQ2, EQ3, EQ4, EQ5, EQ6

11 Construction: list of allowed values (enumeration), C1, C2, C3, C4, C5, C6

12 ComfortClass: list of allowed values (enumeration), CT1, CT2, CT3, CT4, CT5, CT6, CT7, CT8

Definition and exchange of PoR

PoR data is captured in a table format. Accordingly, the Comma Separated Values format (CSV) is used to export

and share the PoR data. Please note that in order to achieve syntactical compliance (see chapter 2.2) it is necessary

to use a point as a decimal separation for any float value, in our case relevant for the required area of a room. If the

CSV has a comma as cell separator and the amount is written with a comma, the decimals are processed in another

cell according the importer. The “amount” requirement is expected to be an integer value and thus is not critical for

the CSV export.

PoR data can be defined in different environments, for example Briefbuilder, dRofus, Excel, Google sheets or any

other spreadsheet tool or even in a normal text editor. The main requirement is the use of consistent column names

and values in order to be compliant with the agreed table structure. Additionally, the tool must enable to export to a

CSV format. For tools like Briefbuilder it is possible to create export templates to meet the required structure of a

STREAMER PoR. For clients who do not have access to Briefbuilder a Google sheet environment has been devel-

oped. In this template sheet default mappings of labels and rooms are also available. Next to the default setting, an

internal library is used. The attribute “room name” has no predefined enumeration values and thus can be used as

a project specific name (any text is allowed). However, it is also possible to use an internal library in the Google

sheet environment to link the room name to a STREAMER standardised room type. If the room name matches a

term in the internal library, then default label settings can be used. In such case it is only necessary to define the

room name, amount, area and functional area.

PoR data checking

PoR model checking can be done either directly in the Early Design Configurator, which is using the PoR data to

develop the room layout (see import checking in chapter 5.4), or by a separate and neutral model checking tool

based on IFC and mvdXML, for instance the XBIM tool as described in chapter 5.2. While the EDC can import the

CSV format directly, the mvdXML-based checking option needs to convert the CSV data to an IFC model first, which

a general challenge is being also relevant in other data sharing scenarios. This checking scenario is shown in Figure

12 that in particular is relevant for checking the PoR data export by the client who may not own an EDC tool licence.

A data export check that can be done by the client enables to avoid additional change requests if missing data is

later identified by the architect when trying to import the data for doing the early design configuration. Accordingly,

completeness and consistency is ideally already checked on data export to avoid further delays due to incomplete

data sets and additional change cycles.

Figure 12: IFC- and mvdXML based model checking of PoR data.

Much of the design development information is today shared through informal spreadsheets. This is the case even

if the information is developed using formal applications with well-structured databases. In our case the PoR was

prepared using Briefbuilder and the information was shared as mentioned as a simple CSV file (Table 1).

Table 1: PoR headings and example row

RoomName Receptie

RoomType reception

Amount 1

Area 36.8

FunctionalAreaType Outpatient Internal Medicine

BouwcollegeLayer O

HygienicClass H4

AccessSecurity A1

UserProfile U2

Equipment EQ2

Construction C1

ComfortClass CT2

In order to make this information available for formal checking prior to incorporation into the design process, it is

necessary to add the semantic meaning of the individual rows and columns. This was achieved through the use of

PoR checking

Briefbuilder
Rijnstate

Early Design
Configurator

KIT

CSV, defined 04.11.2015 Mapping to IFC (AEC3 UK)

✓
mvdXML for PoR checking

1

the AEC3 BimServices Transform1 utility (Nisbet 2010). This utility accepts IFC, XML, XHTML, text and spreadsheet

inputs and apply a regular XSLT transformation with the result being output as IFC, XML, XHTML, text and spread-

sheet as appropriate. For the current need, a library transformation “fromSpreadsheet” was applied to the PoR CSV.

The semantic meaning of the rows is by default unknown. The transformation takes a single extra parameter ‘topic’

which identifies the semantic object represented by the rows. The choices include ‘project’, ‘site’, ‘building’, ‘storey’,

‘zone, ‘component’, ‘system’, ‘type’ or in this case ‘space’. The transformation then creates a complete IFC model

with the minimum number of other objects necessary to give context for the objects. So by identifying the content

as ‘space’, one of all the other object types are created, and one space object for each row found. All the expected

relationships and attributes are also created, including Name, Description, ObjectType, and Owner History. Unique

identifiers are assigned to the objects. The transformation can draw on a ‘local dictionary’ (Figure 13) which is

maintained from any other project models available, to discover the preferred name, English or Dutch description

and unique identifiers for the project, site, building and so on.

<concept type="object">

 <term context="IFC">IfcBuilding</term>

 <term context="local"> Rijnstate Hospital</term>

 <term context="global">2QkBWKvhH9_S6PYEmI9mJ0</term>

 <term context="en-GB">Rijnstate Hospital</term>

 <term context="du-NL"> Rijnstate Hospital </term>

</concept>

Figure 13: Fragment from the local dictionary.

The semantic meaning of the columns is by default unknown. Each field is mapped to a property grouped in a

default property set ‘Default_SpaceProperties’. Each property is taken as a simple text property. However, the

transformation makes use of a second ‘global dictionary’ which contains hints which can add value to the outcome

by associating the column headers (in whatever language) to specific IFC attributes (Figure 14).

<concept type="property">

 <term context="BriefBuilder">Room type</term>

 <term context="PoR">RoomType</term>

 <term context="IFC">ObjectType</term>

 <term context="en-GB">Space or Component Type</term>

</concept>

Figure 14: Fragment from the global dictionary.

The global dictionary (Figure 15) can also hold pointers to the expected parent, for example a property set, any

synonyms, and any expected values. In the STREAMER project many slight variations in these names were pro-

posed before finally being agreed.

<concept type="property">

 <term context="BriefBuilder">7. Types of space</term>

 <term context="STREAMER">BouwcollegeLayer</term>

<term context="IFC"

parent="STREAMER_SpatialStructureLabels">

BouwcollegeLayer<

</term>

 <term context="en-GB">

Four way classification of hospital spaces by activity

</term>

</concept>

Figure 15: Fragment from the global dictionary.

By default the objects created are arranged spatially in a regular grid pattern appropriate to the topic. Sites, buildings

and spaces are laid out on a horizontal plane (Figure 16), storeys in a vertical stack, and components in a 3D

pattern to ensure that every component is visible from all sides.

The outcome is a valid and complete IFC model, ready for review, checking and federation with other sub-models.

Note that the specified mvdXML and the EDC validate the PoR on names based on the given vocabulary and

structure. If the name does not occur in the CSV file loaded into the EDC, the PoR is rejected and an error will pop

up. If other or additional names than agreed within STREAMER shall be used they have to added to the exchange

requirements to be properly checked. Otherwise the PoR cannot be processed by the EDC.

4.2 EDC to Energy simulation

The Early Design Configurator produces IFC2x3 files following the agreements of the Coordination View 2.0, more

specifically the “SpaceBoundary1stLevelAddOnView”. It is thus fully compatible with available IFC 2x3 files pro-

duced by todays CAD applications.

The data given by the PoR is converted into an IFC data model that was selected as the best solution produced by

the genetic algorithm of the EDC considering the imported design rules that are used for design validation. The

following data is produced and exported by the EDC (for further details see also chapter 5.4) :

 IfcProject instance with all basic settings (units and geometric representation context)

 Spatial structure of the building (including IfcSite, IfcBuilding, IfcBuildingStorey and IfcSpace)

 Position and orientation of the building

 Space instances with all label properties given by the PoR

 1st level space boundaries of all spaces

 Base quantities

 Physical bounding elements like walls (IfcWallStandardCase) and slabs/roofs (IfcSlab)

 Glazing property for walls

 Default material information for bounding elements

 Default instances for each space for ventilation and lighting (IfcFlowTerminal)

 Zones being a group of spaces

 Ventilation and lighting systems being a group of IfcFlowTerminal instances

Figure 16: The outcome is a semantically rich IFC model (DDS Viewer)

Currently not exported are:

 Physical bounding elements like window and door

 Wall connection

This data needs to be imported by the used energy simulation tool and must be processed and enriched by missing

data. Main challenges in general are to deal with windows and doors, to include local weather data and to may

convert 1st level into 2nd level space boundaries. A specific challenge for STREAMER is to evaluate the given labels,

which means to derive relevant room settings like set temperature or occupancy and to group spaces into thermal

zones. More details how IFC-based design data are imported by the different simulation tools namely the CENtool,

VABI Elements, Trnsys, SBEM and Energy+/Simergy are described below.

CENtool

The CENtool consists of the recently developed standards EN ISO 52016-1:2016, energy needs for heating and cooling,

internal temperatures and sensible and latent heat loads, and EN ISO 52010-1:2016, external climatic conditions, which

are part of the new EU wide EPB calculation. The original implementation developed for CEN, as validation of these new

standards, is reused and extended by supporting IFC input for Streamer purpose.

The IFC file produced by the EDC is used as import by the CENtool. It uses the Streamer labels to add detailed information

related to occupancy and set point temperatures of individual rooms. Currently the tool calculates each individual room

due to the missing of zoning details according to the CEN EPB methodology described in EN ISO 52000-1:2016. But still,

additional input data is needed before the simulation can be started. This includes:

 An external climate file depending on the geo-position of the building; the needed data is imported as a file

that is to be placed in the data folder and is using a comma separated value (csv), currently using a “RAY”

extension. The file should have values for temperature, humidity, wind speed and direction, irradiance (direct

normal, diffuse on horizontal surface, global solar) and ground solar reflectivity

 Some default assumptions are done for properties on walls, windows, floors and roofs which are not yet

present in the IFC file from the EDC. However these values do relate to materials, but the conversion would

require a detailed material database describing properties of the materials.

 System configurator is defined in an external TXT file (tab separated value format) and includes:

o Ventilation recirculation factor;

o Ventilation heat recovery efficiency;

o total system efficiency (emission + distribution + generation) for heating, cooling (and domestic hot

water not yet used).

VABI Elements

Vabi Elements is a commercial design tool for computing energy analysis simulations based on a 3D model. This

tool was selected because of its strong position in the Dutch market. It combines several types of energy simulation

relevant in the Netherlands and is also able to import IFC files. Other data formats such as gbXML are currently not

supported and therefore must be converted to IFC first.

Vabi Elements is able to handle 3D geometrical information of elements, but does not evaluate further parameters

such as for instance the U-value of a wall. It also allows to visualize imported IFC data as shown on right side of

Figure 17.

Figure 17: IFC file visualized in Solibri (left) and VABI Elements (right)

Based on the proposed layout and geometry, VABI Elements can do different simulations and calculations, for

instance:

 Peak requirements for heating and cooling; both on room and building level

 Heating and cooling demand; both on room and building level

 Thermal comfort calculation on room level

To do energy simulation, VABI Elements requires additional parameters, like occupancy, heating and cooling sys-

tem, opening times and so on. This data should be derived from labels given by the PoR. Unfortunately, VABI

Elements cannot extract these parameters directly from an IFC file exported by the EDC. Thus, a work around has

been developed to deal with that issue. It consists of a VABI library that is defining used STREAMER labels. Those

labels are enriched with adequate settings for missing parameters. Based on this extension it is possible to calculate

energy consumption and thermal comfort.

Data import has been tested with EDC output. At the time of this writing two issues remain unresolved:

 There are no windows and doors, that in particular are relevant for external walls

 Internal and external walls do have the same properties so that they are recognized by VABI as similar walls.

Trnsys

STREAMER labels represent generic data for ordering requirements. Unfortunately, there is no “understandable

values” by simulation tools for each label. So, we decided to allow the user to fix some corresponding values for

some labels by user graphical interface and to recover the bare minimum data from IFC file. Here are presented

the data required by evebim-Trnsys:

 An IfcSpace by room (with each IfcRelSpaceBoundary - level 2)

 The “BaseQuantity” for IfcSpace:

o NetVolume,

o NetFloorArea

 The property “IsExternal” must be filled for IfcWall, IfcSlab and IfcDoor

SBEM

AEC3 already had a mapping from IFC into SBEM input format, based on the mapping of traditional (detailed)

models. For STREAMER this was developed to ensure that:

 Unless specified, for example a CHP (combined heat and power) unit, a generic HVAC was assumed

 Unless specified, a generic HWS (hot water system) was assumed

 If systems were present, these were considered in preference to any constituent terminals

 If zones were present, these were considered in preference to any constituent spaces

 BouwCollege semantic labels mapped to the SBEM specific activity codes for the zones. This was achieved

through an independent dictionary. The activity code determines the casual and equipment codes, occu-

pancy and lighting requirements.

 SBEM and its results

SBEM is a computer program that provides an analysis of a building's energy consumption. SBEM estimates the

monthly energy use and carbon emissions of a building when given a description of the building's geometry, con-

struction, and its building services equipment. SBEM was originally based on the Dutch methodology NEN

2916:1998, Energy Performance of Non-Residential Buildings. It has been developed in order to comply with the

emerging CEN standards, where a full description of the methodology implemented in SBEM can be found. The

purpose of the program is to aid in the analysis of energy usage in buildings through a simplified calculation that

maintains simplicity and consistency for the user.

ENERGY+/SIMERGY/DESIGNBUILDER

The Italian case assumes a retrofitting scenario for which the EDC is less equipped at the moment. Accordingly, a

different approach was chosen based on the tools ArchiCAD from Graphisoft and Simplebim from Datacubist. The

PoR is organised by classes of labels for the requirements that should ideally be met for each function. In an existing

hospital these requirements are not necessarily met. The difference between theoretical requirements and real

performance can be analysed as a measure of under- or over performance (Deliverable 2.3). A large number of

rooms is defined, each with a number of labels containing crucial information for the purpose of the energy simula-

tion.

The IFC model of the existing building originating in ArchiCAD is exported based on the Concept Design Model

View with base quantities, materials (with material code assigned to each) and common properties. ArchiCAD does

not correctly export space boundaries omitting surfaces between adjacent rooms and not recognizing adjacencies

correctly. Two simulation softwares have been used, both are interfaces of the Energy+ simulation engine. Simergy

Pro specifically features a complete importation of the IFC format based on the Concept Design BIM 2010 Model

View, used in the beta version however errors were encountered with the larger models. In a parallel track simulation

was performed with Designbuilder which does not import IFC but only gbXML, in this case 2nd level space bound-

aries have been added in Revit.

The exported IFC model of the existing building is checked in Simplebim before import in the energy simulation

software. The process of checking the model for minimum required object classes, completeness of labels and

allowed values of Streamer labels are set in an Excel template file based on the template supplied with Simplebim.

In STREAMER the corridor does not have any label values so that the checking tool should omit checking label

values for spaces of type “corridor”.

Figure 18: Validation of Streamer labels in Simplebim

The energy simulation software we tested (Simergy Pro, Designbuilder, IDA ICE) do not import the labels defined

in the STREAMER process. Therefore the labels that affect energy performance are used to enrich the file with

required physical values for properties belonging to the IFC schema. First, in Simplebim the property is assigned to

all objects belonging to the IfcSpace.

Figure 19: Adding properties to spaces in Simplebim

The example of Figure 20 shows how the required physical values are assigned based on the Comfort class label

value. While this effort is made to preserve the room data (for the large amount of rooms in a hospital PoR), the

energy consultant BEQ choses to assign MEP systems and building envelope manually within the simulation soft-

ware. A more elaborate description of the process can be found in deliverable 3.4 Energy Simulation Tools, para-

graph 4.3.

Figure 20: Assigning values to properties based on Streamer label values

4.3 Energy simulation to Decision support tool

Ideally, all results are reported in the same way, preferable as properties added to the IFC model and may even be

completed by added energy simulation assumptions. This should include the global annual energy demand and

consumption, ideally given for heating, cooling, hot water, lighting and equipment. An mvdXML-based checking

specification could be based on the previous EDC export check by extending agreed property definitions for the

IfcBuilding instance.

However, experiences using various commercial energy simulation tools are somehow different and may require

further data merging processes or evaluation of proprietary results formats. The next section describes how results

are submitted to the Decision support tool.

CENtool

The CEN tool simulation calculates the following results:

 Total building and each individual space Energy demand for heating and cooling

o Using the layout plan with glazing given by the EDC

o Using solar irradiance on surfaces

o Using a replaceable climate data file (data that must match with the geo-position of the building)

o Using ventilation heat loses (reduced by recirculation and heat recovery units)

 Building Energy consumption for heating and cooling

o Using a efficiency per system (combination of emission, distribution and generation)

The results are exported to two files:

 ThermalZone[space number].csv

Detailed hourly report of the calculated demands and internal temperatures in a proprietary CSV format for

each thermal zone, currently this equals each space.

 [original name]_energyCalc.ifc

A new version of the IFC file extended with the results of the calculation (per zone and building). Results are

exported to same properties as Trnsys (see Figure 24).

VABI Elements

VABI Elemens supports different types of energy calculations (see chapter 4.2). Accordingly, many results attached

to building and space instances can be exported, preferable in a table format as shown in Figure 21. The tool also

enables to colour code spaces showing for instance heat losses within the building (see Figure 22).

Besides the Excel table format results can be exported to an IFC file. They then include basic 3D geometry infor-

mation and result data (see Figure 23).

Figure 21: Energy results for spaces produced by VABI Elements

Figure 22: Visualization of results

Figure 23: IFC export including basic geometry and result values.

Trnsys

To facilitate the communication of simulations results to the Support Decision Tool, it has been decided to use the

IFC format by placing the results into STREAMER property set linked to the building. We decided to use the same

IFC file as the one describing the IFC building rather than having a specific IFC for the results to avoid having to

copy all unique ID for IfcProject, IfcSite and IfcBuilding to keep the spatial structure. The energy simulations were

performed in 2 steps:

 The heat and cold demand: the calculation are stored in the Pset Heat and Cold demand.

 The energy consumption of heating and cooling system are stored in the Energy Consumption Pset (see

Figure 24).

Figure 24: Psets used to store energy simulations results in IFC

SBEM

SBEM produces a single Building Energy Rating (for comparison against a Target Energy Rating). Other results

are reported in a CSV format. These results include monthly breakdowns (in kWh and MJ) for each demand (heat-

ing, lighting, and equipment, auxiliary) and each consumption (gas, electricity, other fuels). Breakdown is also avail-

able for each individual zone, including also occupancy gains. These results were mapped to make an IFC sub-

model and then merged with the input IFC to create a complete outcome, holding the campus, zones and the

chosen system upgrades with area, cost and energy values.

Table 2: SBEM_AnnualEnergyDemand_UK - REPORT- Energy consumption by End Uses in MJ and stored in an
IfcPropertySet

Name Value Description

HeatingAnnualEnergyDemand 675609 MJ Heating energy demand

CoolingAnnualEnergyDemand 0 MJ Cooling energy demand

AuxiliaryAnnualEnergyDemand 138790 MJ Auxiliary energy demand

LightingAnnualEnergyDemand 33003.8 MJ Lighting energy demand

HotWaterAnnualEnergyDemand 336095 MJ Hot water energy demand

EquipmentAnnualEnergyDemand 419656 MJ Equipment energy demand

Table 3: SBEM_AnnualEnergyConsumption_UK - REPORT- Energy consumption by Fuel Type in MJ and stored
in an IfcPropertySet

Name Value Description

NaturalGasAnnualEnergyCon-
sumption

1.0117E+006 MJ Natural gas energy consumption

LiquidPetroleumGasAnnualEner-
gyConsumption

0 MJ Liquid Petroleum Gas energy consumption

BioGasAnnualEnergyConsump-
tion

0 MJ BioGas energy consumption

OilAnnualEnergyConsumption 0 MJ Oil energy consumption

CoalAnnualEnergyConsumption 0 MJ Coal energy consumption

AnthraciteAnnualEnergyCon-
sumption

0 MJ Anthracite-ECF

SmokelessAnnualEnergyCon-
sumption

0 MJ Smokeless energy consumption

DualFuelAnnualEnergyConsump-
tion

0 MJ Dual fuel energy consumption

BiomassAnnualEnergyConsump-
tion

0 MJ Biomass energy consumption

GridSupplyAnnualEnergyCon-
sumption

171794 MJ Grid Supply Electricity energy consumptions

WasteHeatAnnualEnergyCon-
sumption

0 MJ Waste Heat energy consumption

DistrictHeatingAnnualEnergyCon-
sumption

0 MJ District heating energy consumption

Displaced-ECF 0 MJ Displaced-ECF

The SBEM results CSV file is transformed into an IFC sub-model and then merged back into the main IFC model.

These two processes are both achieved by converting the inputs into XML (Spreadsheet XML 2003 and ifcXML,

applying an XSLT transformation and then converting the resulting ifcXML into IFC.

The transformation of the SBEM results CSV notes the headings found in the file. A local dictionary file contains the

correspondence between each heading and the desired IFC property name and IFC property set name. This en-

sures that the pipeline can match any IFC definition or STREAMER requirement.

<concept type="property">

 <term context="SBEM">NatGas-ECF</term>

 <term context="en-GB">Natural gas energy consumption</term>

 <term context="IFC">NaturalGasAnnualEnergyConsumption</term>

</concept>

Figure 25: Example of the global dictionary holding SBEM, en-GB and IFC terms.

ENERGY+/SIMERGY/DESIGNBUILDER

Simulation data is exported in a CSV file, which is then merged with the IFC file through a separate tool called

Simplebim. This additional post-process enables to include all required data in a single IFC file that can be evaluated

by the Decision Support Tool (DST). Results are exported as property sets and include energy consumption as well

as heating and cooling demands (see result tables below). The carbon emission KPI required in the DST is also a

direct output from the energy simulation. The life cycle cost KPI is calculated directly within the DST.

Table 4: Annual consumption by end use

 Electricity

[kWh]

Natural Gas

[kWh]

Additional Fuel

[kWh]

District Cooling

[kWh]

District Heat-

ing [kWh]

Water [m3]

Heating 0 0 0 0 154684 0

Cooling 0 0 0 112937 0 0

Interior

lighting

359326 0 0 0 0 0

Interior equip-

ment

30879 0 0 0 0 0

Water

systems

0 0 0 0 663206 10385

Total end uses 390205 0 0 112937 817890 10385

Table 5 : Annual Energy consumption for the Carreggi hospital (preliminary data)

Description Yearly consumption (MWh)

Room Electricity 30879

Illumination 359326

Heating (Other) 181900

Cooling (Electricity) 60204

Cooling (Other source) 22203

ACS (Other) 780242

4.4 Decision support tools to Modelling tool

IFC data produced by the EDC and may enriched by the energy simulation and decision support tool shall be used

in standard CAD authoring tools to improve and extend the current design proposal. Missing elements like windows,

doors, HVAC equipment etc. must be added and properly connected to existing data. If some data is not properly

imported or lost, it has to be re-entered or otherwise imported and merged to the BIM data. This can be time-

consuming and error-prone and thus shall be avoided. This chapter describes experiences with using the EDC-IFC

file in commercial CAD tools like Revit and ArchiCAD.

Further data processing with Revit

Autodesk Revit 2016 is able to import IFC files. The IFC file that is generated by the current version of the EDC

(July 01, 2016) does contain all the information that is collected through the process, besides the applied design

rules. IfcSpaces are translated to the room family in Revit. The semantic data attached to the IfcSpace are stored

and linked to the Revit room family. This data includes the labels, functional area, room name, number of occur-

rences (amount) and room type. It does not include the required area (see Figure 26 and Figure 27). The Area

(value is 16.0) under STREAMER PoR of the IFC file cannot be traced back in the room properties in Revit. This is

probably due the fact that Revit does not import the structure of the IFC file and placing all parameters under.

For validating the current design with the original requirements it would be preferable to have the original require-

ments attached to the room or linked by a link to the original file. In Briefbuilder for example it is possible to include

a URL of the room typology, so that at any time the original requirements can be found and validated.

Figure 26: Properties of IfcSpace object seen in the FZK viewer

Since the latest version of the EDC, the IFC export includes walls that are processed by Revit into a Revit wall

family with actual geometry. Some of the semantic data produced in the EDC is lost however. For instance the

distinction between an outer and inner wall cannot be found in the wall properties within Revit (see Figure 26 and

Figure 28 for comparison between the IFC file and the same file imported into Revit). This could be a risk as some

data is re-entered and could thereby be different than the original source. If every tool uses other assumptions the

performance simulation could be off. This is crucial within a STREAMER workflow as a design is not only simulated

and validated on energy performance but also on LCC and Quality as well.

Figure 27 Properties of IfcSpace object seen in Revit

Figure 28: Properties of IfcWall object imported into FZK Viewer.
Highlighted is the exterior wall parameter which is not present in Revit.

Figure 29: Properties of IfcWall object imported into Revit

Some additional steps probably need to be taken to transfer the IFC parameter values to “natural” Revit parameters.

There are several ways to do this more or less automatically. An option is making a room schedule in Revit with the

IFC parameter in one column and the Revit parameter in another. Then copy paste the content of the IFC parameter

into the native Revit parameter. A more automatically driven option is by using the plugin Dynamo in Revit, which

is a visual scripting tool based on Python.

ArchiCAD – Careggi

The Carreggi hospital is seeking to extend its SACS database to include STREAMER results. In the Carreggi case,

both the existing hospital and intervention proposals are modelled in ArchiCAD. Due to known limitations of the IFC

format as not having been intended for round tripping geometry, the best results will be obtained by importing

numerical information from different data sources (energy data from simulation software, KPI’s from the Decision

Support Tool) back into the original ArchiCAD file. To guarantee a correct coupling of the data both the file as well

as all the rooms should have a unique ID.

Once inserted into the ArchiCAD file the simulation results are static information belonging to a single design phase

which will not update automatically as the design is being developed.

5. Prototype Implementation

5.1 Requirements Capturing with BIM-Q

Need for a shared, web-enabled requirements management tool

As outlined in chapter 3.2 exchange requirements are a means for communication and thus need to be agreed and

shared between involved participants. Also, many requirements are applicable for several processes so that a lot

of definitions can and should be reused.

Today, exchange requirements are typically captured in a spreadsheet format. For each physical or conceptual

thing it captures relevant properties, its meaning and use in design processes (IDM). It is simple and straight forward

but the more information is captured and shared, the more difficult it is to keep consistency and maintain the content.

There are also limitations to evaluate and export requirements, in particular for generating various reports and

producing an mvdXML file for checking purposes. Accordingly, there is a need for better tool support leading to the

web-based BIM-Q solution.

Before collecting exchange requirements an initial set-up of the database is necessary. The first step is to define a

template guideline that shall group all definitions. This might later be used to configure project requirements. Next

to this, the selection of involved stakeholders, covered stages and processes as well as relevant mappings is nec-

essary. Mappings include links to classification systems, translations to other languages and the representation in

data structures like IFC. In this initial step it means to set-up the boundaries for the discussed use cases in terms

of definitions and standards that become relevant to clarify the meaning of terms and to be used for data exchange.

Each of those settings can be changed or extended in later stages, but it defines the starting point for defining

relevant terms, which is the first main step of capturing domain knowledge.

Set-up of reusable concepts

Definition of exchange requirements follows the object-oriented modelling principle, but with less restrictive rules.

Everything is a concept. Each concept can be described, typed, mapped to other definitions and arranged to each

other in order to form more complex concept definitions. A concept can for instance represent a class of beam

objects whereas another concept represents a simple datatype property for fire rating.

An exchange requirement is typically defined for a property of some object class. A fire safety calculation may

require the fire rating property for all loadbearing building elements. It is a simple and natural way of expressing

requirements that can be defined by non-IT experts.

Experiences have shown that a lot of concepts are reused for requirement definitions, in particular in case of generic

properties. This is leading to a lot of copied content that is later difficult to maintain. Therefore, the first step is to

collect reusable concept definitions that can be arranged in any level of complexity. In that way, a pool of concepts

is defined that later can be arranged to any requirement setting that needs to be described. Each reusable concept

is linked to default definitions, such as a description or the mapping to IFC, which however can be overridden in a

requirement setting if necessary.

The pool of reusable concepts can be organized according to own preferences. Our recommendation based on

experiences is to organize similar concepts in groups like classes, properties and geometry. STREAMER is using

a labelling approach and thus is using the structure as shown in Figure 30. Further subgroups are recommended,

but should be kept as simple as possible. If properly arranged it later helps to find the right concept and to configure

the requirement settings.

Figure 30: Reusable concepts as defined in the STREAMER project.

Configuration of exchange requirements

The next step is to link objects with properties in order to express requirements. This is done by dragging reusable

concepts to a new requirements tree as shown in Figure 31. Both trees provide independent search capabilities so

that concepts can easily be found and arranged in the requirements tree. In order to speed-up the set-up process

it is also possible to drag and drop a concept with all child elements. If reusable concepts are properly arranged it

supports an easy and fast set-up process.

Differently to reusable concepts there are some constraints regarding the organization of the requirements tree.

Those constraints exist mainly due to the fact that some meaningful reports or an mvdXML file shall be generated

out of this tree. By following the idea of having a property of some object class the structure should follow the rule

of having a property concept, marked as a simple datatype, always as a child element of an object concept. In

between there might additional group concepts for better organization of requirements, which are ignored for later

model checking. There are special solutions for enumeration datatypes having allowed values as child concepts,

which however do not break described general rule. Nevertheless, a risk of configuring a requirements tree that

cannot be properly exported to mvdXML checking file remains so that this step should carefully done.

Figure 31: Set-up of the requirements tree by dragging reusable concept from templates (left) to the requirements
tree.

Once the requirements tree is defined the usage settings for the different processes can be configured. It basically

means to make a decision what data is required, optional or not allowed. Additionally, an owner of a data concept

has to be defined who is responsible to deliver that information (Figure 31).

IFC mapping definitions

Each concept can have any number of mapping definitions to whatever data structure is of interest. In our case the

focus is on the open IFC-BIM format that can be formalized by mvdXML definitions.

There are basically two types of mapping definitions:

 Object concept mappings:

For mvdXML it means to configure a ConceptRoot element comprising of the selection of an IFC entity

(applicableRootEntity) and, optionally, additional Applicability settings.

 Property concept mappings:

This requires the configuration of a Concept element, which needs to identify and configure an appropriate

ConceptTemplate.

The BIM-Q tool supports a simple syntax to easily configure most frequently needed mapping definitions. An object

concept for instance maps either 1:1 to an IFC entity, or is additionally restricted by the PredefinedType attribute or

some property values. The expression IfcWall.IfcWallTypeEnum.SHEAR is for instance applicable for all IfcWall

instances having the PredefinedType attribute set to “Shear”. Similar solutions are available for property concepts,

where for instance the configuration of properties and quantities is often needed. Uncommon mapping definitions

have to go through a more complex configuration process. This however shouldn’t be a problem as this step has to

be done by an IFC expert who is familiar with the IFC specification and available mvdXML concept templates.

Objects

Properties

Figure 32: Definition of usage settings and assignment to a concept owner

Reporting and mvdXML export

The final step in the requirements capture process is to produce some sort of evaluable result. This might be a

specific PDF report that could act as a contract annex, an mvdXML file for checking purposes or some template

documents. In case of mvdXML it is possible to export all settings to a single file. Alternatively, it is also possible to

export settings of specific processes or a single owner only. The contractual content can also be presented as a

BIM Guideline compliant to the ISO 12911 framework, presenting the strategic goals, management objectives and

implementation requirements.

The export feature itself is translating the used mapping syntax to an mvdXML, which for instance in case of prop-

erties expands to a check of properties on occurrences and properties on types. At the time of this writing there is

no consistency check against the IFC specification so that spelling errors are not identified. However, testing a valid

file should quickly show wrong mapping definitions.

5.2 mvdXML plugin for XBIM

In order to test the adoption of mvdXML-based requirement specifications against the model data exchanged be-

tween different stakeholders of the STREAMER project, an implementation of the validation features of mvdXML 1.1

has been developed using the infrastructure offered by the open source xBIM toolkit.

The implementation is mainly designed to allow individual stakeholders to independently verify the conformity of

received and produced IFC models against the agreed exchange requirements and concept roots in a user friendly

visual 3D environment.

To maximize the reusability of the developed components in other validation scenarios the implementation has

been divided into two software components:

1 the mvdXML validation library (mvdLib) is a .NET dynamic link library providing validation capabilities that

can be consumed in multiple deployment scenarios (e.g. Xplorer UI, web services, cloud environments,

command line applications, etc.)

2 the XbimXplorer mvdXML Plugin (mvdUi) is an extension plugin for the pre-existing XbimXplorer IFC

viewer that provides the User Interface for interactive validation of models against specification files.

Both modules have further development activities planned in response to feedback from the STREAMER project

as well as from scheduled innovations in the underlying xBIM toolkit.

User interface development and collaboration workflow

To enable a complete collaboration workflow between stakeholders of the established IDM processes the mvdUI

component has been designed to allow the interactive analysis of models according to arbitrary combinations of

exchange requirements, concept roots and IFC classes, the UI allows immediate feedback on the validation status

of selected elements as well as whole models; this filtering strategy also helps to improve the responsiveness of

the application which can become relevant if thousands of requirements need to be checked for large IFC models.

Visual color coding styles have been developed to allow rapid traffic-light model inspection in the 3D viewer of

passing and failing requirements.

The development of features for the semi-automatic production of validation reports in the BIM collaboration format

(BCF) have required the redesign of the XbimXplorer plugin API in order to allow integration of the MVD plugin with

the existing BCF plugin; the designed features allow stake-holders to exchange communication threads on the

result of validation tests across different BIM plat-forms while retaining complete reference of the involved IDM,

MVD and IFC background.

Figure 33: Checking result of an example space layout generated from space requirements. Project details on the
left, results on the right

5.3 eveBIM

The snapshot shown in Figure 34 is an example of BCF workflow within eveBIM. On the left you can see the data

deposited on the document server: IFC file and the related BCF annotation. The corresponding file is opened in the

centred 3D view. On the right the detail of the corresponding annotation is available: author, date, title, description,

snapshot, related IFC file and BIM objects. The click in the annotation snapshot repositions the building in the same

view point.

The workflow proposed her is to open IFC file from the CSTB document server, to analyse it, to apposite an anno-

tation if needed and to link this annotation with the IFC file (as a related file) on the document server.

At any time anyone could retrieve this IFC file from the server and its related annotations and can answer to it or

upload a new IFC file to correct the model according to the annotation.

Figure 34: Screenshot of the eveBIM viewer

5.4 Checking in the Eearly Design Configurator

Import and checking inside the EDC

Currently the Early Design Configurator (EDC) imports two data sets:

 the Program of Requirements (PoR)

 and the Design Rules

The PoR is a CSV (Comma Separated Value) file, which is generated by the software BriefBuilder or by a Microsoft

Excel Template. The separator of the CSV file is not predefined, but can be redefined in the settings dialog of the

EFC. All values of the CSV, which are not a free text, must follow the specification of the STREAMER vocabulary

[DiGiulio2015]. The title of the columns is also predefined. According to the requirements describe in chapter 4.1

the EDC checks the following titles and values (see also chapter 4.1 and D1.6):

 RoomName: Free text -> no further check

 RoomType, FunctionalAreaType, BouwcollegeLayer, HygienicClass, AccessSecurity, UserProfile,

Equipment, Construction, ComfortClass: Predefined text from the STREAMER vocabulary

 Amount: Integer > 0 (a positive value is expected)

 Area: Real number > 0 (with area unit)

All names and values are case sensitive. The import does not validate the semantic of the requirements, e.g. if two

labels values can be combined.

The Design Rules describe geometric relation of rooms and are stored in an XML format. Each rule contained in a

rule file contains a rule name, priority, a applicability expression and a relation. The name is a free text. The priority

determines which rule has a higher probability to be fulfilled. The expression selects one or two groups of room to

which the relation is applied. The relation defines which geometric relation should be applied to the rooms.

The defined relations are:

 SameStorey: must be on same storey as

 DifferentStorey: must be on different storey as

 ContainedInStorey: must be contained in storey

 Clustered: must be clustered horizontally and vertically

 TravellingDistance: Travelling distance between two Rooms on the same floor

 TravellingDistanceRtoR_Patient: must have travelling distance RoomToRoom Patient of

 TravellingDistanceRtoR_Staff: must have travelling distance RoomToRoom Staff of

 TravellingDistanceFAtoFA_Patient: must have travelling distance FAToFA Patient of

 TravellingDistanceFAtoFA_Staff: must have travelling distance FAToFA Staff of

 TravellingDistanceRtoFA_Patient: must have travelling distance RoomToFA Patient of (optional)

 TravellingDistanceRtoFA_Staff: must have travelling distance RoomToFA Staff of (optional)

 TravellingDistanceFAtoR_Patient: must have travelling distance FAtoRoom Patient of (optional)

 TravellingDistanceFAtoR_Staff: must have travelling distance FAtoRoom Staff of (optional)

 DirectlyAbove: must be directly above

 DirectlyBelow: must be directly below

 PartlyAbove: must be partly above

 PartlyBelow: must be partly below

 SeparationRtoR: must have separation RoomToRoom of

 SeparationFAtoFA: must have separation FAToFA of

 SeparationFAtoR: must have separation FAToRoom of

 SeparationRtoFA: must have separation RoomToFA of

 SeparationRtoOB: must have separation RoomToOuterBoundary of

 SeparationFAtoOB: must have separation FAToOuterBoundary of

While importing the file, the EDC checks the file against the defined XML schema [Sleiman2015].

Export

The Early Design Configurator (EDC) is able to export the results as a BIM model (IFC) or as a GIS model

(CityGML). In the case of the BIM model all available details of the building are exported, while in the GIS case only

the outer shell separated in wall -, roof – and ground surfaces is exported (see Figure 35).

Figure 35: The BIM (IFC) model on the left side and the GIS (CityGML) model on the right side

Both models are located on the position (including orientation), which was selected in the EDC. While IFC 2x3 has

only one possibility to place the model in the world by adding the longitude/latitude values to the site, CityGML

allows different kind of coordinate reference systems. In the case of the EDC, the models are exported in UMT

coordinate systems. In the case of Rijnstate hospital, the EPSG:25831 (UTM Zone 31N) was exported. The correct

geo reference of the buildings is important to access the corresponding climate data for energy calculation.

The CityGML model is only intended for a rough energy estimation by using a single zone model with generalised

default values for thermal transmittance, occupant behaviour etc.

The IFC model can be used for a detailed simulation on space level. Beside the geometry of all building elements,

the space boundaries of each room are exported (see Figure 36).

Figure 36: The generate building elements (walls, slabs, roof, left side) and the corresponding space boundaries
(right side)

Although only generating 1st Level space boundaries, these boundaries can be useful as input for energy calcula-

tion. The generated spaces contain all information from the Program of Requirement (PoR) and are extended by

base quantities (volume, area, perimeter and nominal height). If not calculated by the simulation tools, these base

quantities are relevant parameters for the energy calculation. All spaces are grouped according to the functional

areas they belong to and the grouping is exported as IFC zones. It has to be evaluated, if these zones are corre-

sponding to thermal zones. If there is a relation, these zones can be used by the simulation system. If not, they are

useless for energy calculation.

In order to model the building construction only two IFC element type are used: IfcWallStandardCase and IfcSlab.

The IfcWallStandardCase is used to model both intern and external walls. By using the predefined type of IfcSlab

(Floor, Roof and BaseSlab), the base floor, the floor slabs and the roof of the building are distinguished. By gener-

ating the topology of the wall, the wall axis and the connectivity path can be calculated and exported. Besides the

base quantities for each building element, the available common properties are exported. For each class of building

elements (exterior walls, interior wall, base slab, floor slab and roof slab) a material layer set can be assigned (see

Figure 37 left). The material information will be exported in IFC and will be relevant for the energy calculation.

Besides the building elements for the building construction for each space, two HVAC terminals are created, one

with the entity type IfcLightFixtureType and one with the type IfcAirTerminalType. The terminals have no geometry

but they are grouped in corresponding systems (IfcSystem). As most of the CAAD systems don’t import IFC building

elements without geometry, and the benefit for of such entity for energy calculation has not been demonstrated, it

is unclear if such entities should be exported in the early design stage.

Currently, no doors and windows are generated. In order to get a rough estimation about the minimum area of

glazing, each space connected to an exterior wall get and property with the minimum required glazing surface (in

m2) (see Figure 37 right).

Figure 37: Created walls coloured by wall thickness (left) and created spaces coloured by the minimum glazing
area (right).

As the exported BIM model is not only intended for energy simulation but also for further design processes, the

exported IFC models must also be suitable for further processing in CAAD tools. In order to test this process the

IFC model exported from the EDC was imported into four CAAD systems: ArchiCAD 19, REVIT 2015, Allplan 2016

and Autodesk Architecture 2015 (see Figure 38 and Figure 39). Basically the model was accepted by all systems.

However, all systems ignored the HVAC terminal, as they do not have geometry. ArchiCAD 19 and REVIT 2015

created corresponding space labelling (see Figure 38), while Allplan and Autodesk Architecture 2015 do not create

space labels by default (see Figure 39).

Figure 38: Import of the IFC model generated from the EDC into ArchiCAD 19 (left) and REVIT 2015 (right)

Figure 39: Import of the IFC model generated from the EDC into Allplan 2016 (left) and Autodesk Architecture
2015 (right)

In order to proof if the generated models can be treated like native models, more test must be carried out. In one

of the next steps, type information for every building element will be generated. This might be interesting espe-

cially for systems, which are internal working with types (families, muster etc.).

6. Conclusion

The work presented in this deliverable is dealing with BIM information management and quality control. It introduces

a layered approach that differentiates between different kinds of model checking. Each layer requires own checking

knowledge and is typical managed by different authors or standardization bodies. It starts with generic low-level

requirements about the file format and the data structure and is adding more and more domain specific or even

project-dependent knowledge that ends with the client requirements (PoR). The presented approach is reusing

existing standards and specifications and thus more easily enables to integrate available BIM tools. It represents a

generic solution and is based on principles adopted from the IDM/MVD methodology defined by buildingSMART.

Thus, it contributes to the use and improvement of the underlying mvdXML specification that was introduced for

documentation purposes and definition of so called model views.

The framework presented in this deliverable describes a universal but abstract work- and data flow relevant for

energy-efficient early design including the retrofitting scenario. It also shows relationships to other STREAMER

tasks and work packages that are relevant for BIM information management and quality checks. They mainly deliver

relevant domain knowledge and are doing further tests.

The focus of T5.1 activities is on collaboration support, more specifically on checking data exchange requirements

that support information sharing between stakeholders. A main aspect is completeness of information derived from

specific needs of design processes, such as the early design configuration or energy simulation. Other kinds of BIM

knowledge such as on the data format layer (syntactic, structural compliance) or needed to carry out specific pro-

cesses such as space layout (design rules) or other kinds of compliance checks (general consistency, regulations,

program of requirements) are out-of-scope for T5.1 developments. The solutions developed in task 5.1 are based

on agreements about the data flow between stakeholders. Both, the sender and receiver of information will be able

to check if all agreements are fulfilled or if some data is missing. They can use the same specification and neutral

checking tools to validate results, ideally before submitting requested data to the receiver. This will help to reduce

“requests for information” due to incomplete datasets.

From a technical point of view the main research questions of the developed approach have been: (1) how to do

neutral model checking based on open BIM and (2) how to capture and manage exchange requirements. It was

decided to use and extend the existing mvdXML specification. mvdXML is a neutral standard released by build-

ingSMART, which is already used in the specification work of the IFC BIM standard. So far, the main focus of this

standard has been on documentation purposes. STREAMER started to use mvdXML for model checking and was

contributing to the release of the mvdXML 1.1 in spring 2016. Accordingly, the chosen approach is already embed-

ded in buildingSMART developments thus leading to better acceptance by the industry.

An important feature of mvdXML is the use of configurable concept templates. They enable to specify generic units

of functionality that on one hand support software implementation and on the other hand enable to configure specific

needs of data exchange scenarios. This concept simplifies the definition and management of exchange require-

ments because they can be based on a set of configurable software functionalities.

While mvdXML is a technical solution to encode agreed requirements for IFC-based data exchange another chal-

lenge is to adequately capture domain knowledge that is normally discussed using the language of domain experts

and thus needs to be translated into mvdXML or other IT specifications. STREAMER decided to capture and man-

age both types of specifications in order to support later maintenance where it might be necessary to revise and

update requirements. Additionally, the same type of information might be relevant in different data exchange sce-

narios. The link to processes adds another configuration layer to exchange requirements. Conceptually, these as-

pects are supported by applying the IDM/MVD methodology.

Data exchange discussed in this deliverable is covering three main steps, comprising of: (1) client requirements for

developing an initial design (PoR data), (2) basic room layout data to be used for energy simulation and (3) energy

simulation results to be used for design evaluation and further design detailing. While this sequence is in principle

relevant for new design as well as retrofitting scenarios the latter is more complex due to fact that there are more

design constraints given by the shape of the existing building. Such constraints may need to be imported into the

Early Design Configurator as an initial design layout that can be used as a starting point by the genetic algorithm

for finding a better design solution. Additionally, exchange requirements are still influenced by used energy simula-

tions tools that may not be able to deal with STREAMER specific properties such as the introduced labels. A similar

situation is reported about energy results that may even not exported back to IFC and thus need a data post-

processing to be comparable with results from other tools. Experiences with different tools show existing differences

and the need for harmonization.

Several prototypes have been used to validate the developed approach and to show existing variety of model

checking. The web-based BIM-Q tool has been used to capture exchange requirements and to generate adequate

mvdXML specifications. mvdXML-based model checking has been implemented as a plug-in for the XBIM viewer

offering a neutral solution for testing exchange requirements. It also supports the use of the BCF format to discuss

and manage identified issues. Model checking has also been implemented in the EDC tool offering an import check

of PoR data and design rule settings. Additionally, data export of the EDC already ensures a certain level of quality

trying to fulfil data requirements for energy simulation. Accordingly, the architect who is using the EDC may fully

rely on built-in checking capabilities of the EDC without seeing a need for doing further checks. However, if the EDC

shall be replaced by another tool or if other stakeholders need to check their data then a neutral mvdXML-based

checking solution that may even be used as a legal agreement for design collaboration offers an adequate solution.

Results of task 5.1 show how definition and checking of exchange requirements can be done. The developed ap-

proach is in line with buildingSMART developments and provides a sound basis for further specification work. Pre-

sented mvdXML specifications are still under revision and will be extended to reflect changes and extensions of the

data flow. Ideally, requirements for the different energy simulation tools as well as expected result set are fully

harmonized and thus independent from used tools. Such neutral specifications could then be input to further stand-

ardization activities.

References

 Literature and Standards

BCF (2015) buildingSMART: BCF intro, http://www.buildingsmart-tech.org/specifications/bcf-releases,

last access January 2015

BIM protocol for collaboration (in Dutch):

http://www.pioneering.nl/SiteFiles/1/files/13010o10552__BIM%20Protocol%202_0%20%20v5.pdf

Böhms M. et al. 2008. D23: The SWOP Semantic Product Modelling Approach; With PMO – The SWOP Product

Modelling Ontology. Deliverable of the SWOP project (STRP 016972).

CB-NL presentation:

http://www.bouwinformatieraad.nl/wp-content/uploads/2015/08/IASS2015-CB-NL-Dik-Spekkink-20150819.pdf

Chipman, T. Liebich, T. & Weise, M. 2016. mvdXML – Specification of a standardized format to define and exchange

Model View Definitions with Exchange Requirements and Validation Rules. buildingSMART International Ltd.

15.02.2016.

Coins presentation (BIM exchange standard):

http://www.bouwinformatieraad.nl/wp-content/uploads/2015/08/IASS2015-COINS-Renzo-van-Rijswijk-

21050819.pdf

Deliverable 1.4: Multi-scale and multi-stage scenarios for energy-efficiency retrofitting, STREAMER Deliverable of

work package 1, (to be released).

Deliverable 2.3: New design solutions of integrated EeB solutions for MEP and energy systems, STREAMER De-

liverable of work package 2, (to be released).

Deliverable 2.6: New design solutions of energy-efficient building envelope and spatial configurations, STREAMER

Deliverable of work package 2, (to be released).

Deliverable 3.6: Design decision-support and lifecycle validation tool, STREAMER Deliverable of work package 3,

(to be released).

Di Giulio, R.: D1.2 Semantic typology model of existing buildings and districts, STREAMER Deliverable of work

package 1, 3rd of September 2015

Dutch Revit standards: http://www.revitstandards.org/downloads/

DutchGovernmental buildings BIM Standard: http://www.rijksvastgoedbedrijf.nl/binaries/central-government-real-

estate-agency/documents/publication/2014/07/08/rgd-bim-standard-v1.0.1-en-v1.0_2/Rgd_BIM_Stand-

ard_v1_0_1_EN_v1_0__2_.pdf

Explanation Dutch BIM standards:

http://www.bouwinformatieraad.nl/wp-content/uploads/2015/05/kaart02-eng-v4.pdf

Hilaire, B. et al.: D.3.4 Simulation tool of the energy performance for newly designed and retrofitted buildings,

STREAMER Deliverable of work package 3, Draft version August 2016

Juif, T. et al. (2015): D4.1 Framework for management of information flow, design actors and collaboration in virtual

design and construction, STREAMER Deliverable of work package 4, 7th of Sept. 2015.

Nisbet, N. (2010) “BimServices – Command-line and Interface utilities for BIM”, http://www.aec3.com/en/6/6_04.htm

(accessed 01-Jan-2016), including Transform1 for asset schema interoperability

Presentation Semantic Web:

http://www.bouwinformatieraad.nl/wp-content/uploads/2015/08/IASS2015-SemanticWebTechForCIV2-Hans-

Schevers-20150819.pdf

http://www.buildingsmart-tech.org/specifications/bcf-releases
http://www.pioneering.nl/SiteFiles/1/files/13010o10552__BIM%20Protocol%202_0%20%20v5.pdf
http://www.bouwinformatieraad.nl/wp-content/uploads/2015/08/IASS2015-CB-NL-Dik-Spekkink-20150819.pdf
http://www.bouwinformatieraad.nl/wp-content/uploads/2015/08/IASS2015-COINS-Renzo-van-Rijswijk-21050819.pdf
http://www.bouwinformatieraad.nl/wp-content/uploads/2015/08/IASS2015-COINS-Renzo-van-Rijswijk-21050819.pdf
http://www.revitstandards.org/downloads/
http://www.rijksvastgoedbedrijf.nl/binaries/central-government-real-estate-agency/documents/publication/2014/07/08/rgd-bim-standard-v1.0.1-en-v1.0_2/Rgd_BIM_Standard_v1_0_1_EN_v1_0__2_.pdf
http://www.rijksvastgoedbedrijf.nl/binaries/central-government-real-estate-agency/documents/publication/2014/07/08/rgd-bim-standard-v1.0.1-en-v1.0_2/Rgd_BIM_Standard_v1_0_1_EN_v1_0__2_.pdf
http://www.rijksvastgoedbedrijf.nl/binaries/central-government-real-estate-agency/documents/publication/2014/07/08/rgd-bim-standard-v1.0.1-en-v1.0_2/Rgd_BIM_Standard_v1_0_1_EN_v1_0__2_.pdf
http://www.bouwinformatieraad.nl/wp-content/uploads/2015/05/kaart02-eng-v4.pdf
http://www.aec3.com/en/6/6_04.htm
http://www.bouwinformatieraad.nl/wp-content/uploads/2015/08/IASS2015-SemanticWebTechForCIV2-Hans-Schevers-20150819.pdf
http://www.bouwinformatieraad.nl/wp-content/uploads/2015/08/IASS2015-SemanticWebTechForCIV2-Hans-Schevers-20150819.pdf

See, R.: Concept Design BIM 2010, IFC Model View Definition Diagram, 1st February 2010

http://www.blis-project.org/IAI-MVD/Snapshots/GSA-005_MVD_IFC2x3_Concept_Design_BIM_2010.pdf

Sleiman, H., Hempel, S.: D6.1 Configurator of workflow and building process requirements, STREAMER Delivera-

ble of work package 6, 27th of August 2015

Terzaghi, F.: D7.5 Real case in Italy, Description and outlined design plan, STREAMER Deliverable of work pack-

age 7, 26th of February 2015

Weise M. et al.: D5.1 State-of-the-art review of advancements and challenges in ontology research, STREAMER

Deliverable of work package 5, 28th of February 2015

Werensteijn, D., Di Guilio, R.: D1.6 Semantic baseline design model for new energy-efficient healthcare districts,

STREAMER Deliverable of work package 1, 29th of August 2016 (Draft)

BIM-Q: Database accessible at (with user login): http://85.10.201.48:4570/

xBIM: Latest version available at: https://dl.dropboxusercontent.com/u/38347707/ReleaseV4.zip

CENtool:

Energy+: https://energyplus.net/

DesignBuilder: http://designbuilder.co.uk/

VABI Elements: https://www.vabi.nl/producten/vabi-elements/

SBEM: http://www.uk-ncm.org.uk/

Simergy: http://www.digitalalchemypro.com/html/products/DAProducts_Simergy.html

SimpleBIM: http://www.datacubist.com/

Trnsys: http://www.trnsys.com/

http://85.10.201.48:4570/
https://dl.dropboxusercontent.com/u/38347707/ReleaseV4.zip
https://energyplus.net/
http://designbuilder.co.uk/
https://www.vabi.nl/producten/vabi-elements/
http://www.uk-ncm.org.uk/
http://www.digitalalchemypro.com/html/products/DAProducts_Simergy.html
http://www.datacubist.com/
http://www.trnsys.com/

Appendix

 mvdXML for PoR

The following mvdXML is checking existence of rooms and labels as described in chapter 4.1. It is based on a

minimum set of concept templates (see highlighted <Templates> tag) that have been used in the first mvdXML

export of BIM-Q. It was developed for the IFC4 release, and later adjusted to IFC2X3 for checking PoR data included

in PoR-IFC files but also EDC-IFC files. Please note that specification in the appendix still shows the IFC4 release

(please see applicableSchema entries).

The specification has been manually extended by checking all allowed enumeration values. Furthermore, it not only

checks proper use of predefined label values but is also testing if requested properties are either attached to space

instances (IfcSpace) or space type instances (IfcSpaceType). Whereas both ways to attach properties are sup-

ported, it was finally decided to map room requirements to IfcSpace instances only so that this feature is not really

necessary for checking our STREAMER example data.

The presented mvdXML file includes a single Exchange Requirement only (see <ExchangeRequirement> tag).

Checking of required label properties are defined by concepts being part of a <ConceptRoot> element. They are

linked to the <ExchangeRequirement> element to specify whether a property is mandatory, optional or not re-

quired.

<?xml version="1.0" encoding="UTF-8"?>

<!-- Template for strict export -->

<mvdXML xmlns="http://buildingsmart-tech.org/mvd/XML/1.1"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema" xsi:schemaLocation="http://buildingsmart-

tech.org/mvd/XML/1.1 http://www.buildingsmart-tech.org/mvd/XML/1.1/mvdXML_V1.1_add1.xsd"

uuid="00000013-0000-0000-0000-000000000013" name="AEC3 Requirements Database Manager">

 <Templates>

 <ConceptTemplate uuid="00000000-0000-0000-0001-000000000001" name="ProductConceptTemplate"

applicableSchema="IFC4" applicableEntity="IfcProduct">

 <Definitions>

 <Definition>

 <Body lang="en"><![CDATA[Concept Template for any Product]]></Body>

 </Definition>

 </Definitions>

 <Rules>

 <AttributeRule RuleID="Name" AttributeName="Name"/>

 <AttributeRule RuleID="Description" AttributeName="Description"/>

 <AttributeRule RuleID="PredefinedType" AttributeName="PredefinedType"/>

 <AttributeRule AttributeName="IsDefinedBy">

 <EntityRules>

 <EntityRule EntityName="IfcRelDefinesByProperties">

 <References>

 <Template ref="10000000-0000-0000-0001-000000000001"/>

 </References>

 </EntityRule>

 <EntityRule EntityName="IfcRelDefinesByType">

 <References IdPrefix="T_">

 <Template ref="10000000-0000-0000-0001-000000000002"/>

 </References>

 </EntityRule>

 </EntityRules>

 </AttributeRule>

 <AttributeRule AttributeName="HasAssociations">

 <EntityRules>

 <EntityRule EntityName="IfcRelAssociatesClassification">

 <References>

 <Template ref="10000000-0000-0000-0001-000000000004"/>

 </References>

 </EntityRule>

 </EntityRules>

 </AttributeRule>

 </Rules>

 </ConceptTemplate>

 <ConceptTemplate uuid="a322fdd7-cd28-4ea7-8797-f6cf124ab3d6" name="Partial Templates" ap-

plicableSchema="IFC4">

 <Definitions>

 <Definition>

 <Body lang="en"><![CDATA[Partial concept templates are described herein to indicate

usage of common data types, which are then incorporated into other templates.]]></Body>

 </Definition>

 </Definitions>

 <SubTemplates>

 <ConceptTemplate uuid="88b4aaa9-0925-447c-b009-fe357b7c754e" name="Properties" code=""

applicableSchema="IFC4" applicableEntity="IfcSimpleProperty">

 <Definitions>

 <Definition>

 <Body lang="en"><![CDATA[Properties may contain user-defined data, where data

types are open-ended.]]></Body>

 </Definition>

 </Definitions>

 <Rules>

 <AttributeRule RuleID="Property" AttributeName="Name">

 <EntityRules>

 <EntityRule EntityName="IfcIdentifier"/>

 </EntityRules>

 </AttributeRule>

 <AttributeRule AttributeName="Description">

 <EntityRules>

 <EntityRule EntityName="IfcText"/>

 </EntityRules>

 </AttributeRule>

 </Rules>

 <SubTemplates>

 <ConceptTemplate uuid="6655f6d0-29a8-47b8-8f3d-c9fce9c9a620" name="Single Value"

applicableSchema="IFC4" applicableEntity="IfcPropertySingleValue">

 <Rules>

 <AttributeRule RuleID="Property" AttributeName="Name">

 <EntityRules>

 <EntityRule EntityName="IfcIdentifier"/>

 </EntityRules>

 </AttributeRule>

 <AttributeRule AttributeName="Description">

 <EntityRules>

 <EntityRule EntityName="IfcText"/>

 </EntityRules>

 </AttributeRule>

 <AttributeRule RuleID="Value" AttributeName="NominalValue">

 <EntityRules>

 <EntityRule EntityName="IfcValue"/>

 </EntityRules>

 </AttributeRule>

 </Rules>

 </ConceptTemplate>

 <ConceptTemplate uuid="c148a099-c351-43a8-9266-5f3de0b45a95" name="Enumerated Va-

lue" applicableSchema="IFC4" applicableEntity="IfcPropertyEnumeratedValue">

 <Rules>

 <AttributeRule RuleID="Property" AttributeName="Name">

 <EntityRules>

 <EntityRule EntityName="IfcIdentifier"/>

 </EntityRules>

 </AttributeRule>

 <AttributeRule AttributeName="Description">

 <EntityRules>

 <EntityRule EntityName="IfcText"/>

 </EntityRules>

 </AttributeRule>

 <AttributeRule RuleID="Value" AttributeName="EnumerationValues">

 <EntityRules>

 <EntityRule EntityName="IfcValue"/>

 </EntityRules>

 </AttributeRule>

 <AttributeRule AttributeName="EnumerationReference">

 <EntityRules>

 <EntityRule EntityName="IfcPropertyEnumeration">

 <AttributeRules>

 <AttributeRule RuleID="Property" AttributeName="Name">

 <EntityRules>

 <EntityRule EntityName="IfcLabel"/>

 </EntityRules>

 </AttributeRule>

 </AttributeRules>

 </EntityRule>

 </EntityRules>

 </AttributeRule>

 </Rules>

 </ConceptTemplate>

 </SubTemplates>

 </ConceptTemplate>

 <ConceptTemplate uuid="10000000-0000-0000-0001-000000000001" name="IfcRelDefinesBy-

Properties" applicableSchema="" applicableEntity="IfcRelDefinesByProperties">

 <Rules>

 <AttributeRule AttributeName="RelatingPropertyDefinition">

 <EntityRules>

 <EntityRule EntityName="IfcPropertySet">

 <References>

 <Template ref="10000000-0000-0000-0001-000000000007"/>

 </References>

 </EntityRule>

 <EntityRule EntityName="IfcElementQuantity">

 <References>

 <Template ref="10000000-0000-0000-0001-000000000008"/>

 </References>

 </EntityRule>

 </EntityRules>

 </AttributeRule>

 </Rules>

 </ConceptTemplate>

 <ConceptTemplate uuid="10000000-0000-0000-0001-000000000008" name="IfcElementQuantity"

applicableSchema="IFC4" applicableEntity="IfcElementQuantity">

 <Rules>

 <AttributeRule RuleID="Set" AttributeName="Name">

 <EntityRules>

 <EntityRule EntityName="IfcLabel"/>

 </EntityRules>

 </AttributeRule>

 <AttributeRule AttributeName="Description">

 <EntityRules>

 <EntityRule EntityName="IfcText"/>

 </EntityRules>

 </AttributeRule>

 <AttributeRule AttributeName="Quantities">

 <EntityRules>

 <EntityRule EntityName="IfcPhysicalSimpleQuantity">

 <AttributeRules>

 <AttributeRule RuleID="Property" AttributeName="Name">

 <EntityRules>

 <EntityRule EntityName="IfcLabel"/>

 </EntityRules>

 </AttributeRule>

 <AttributeRule RuleID="Value" AttributeName="CountValue"/>

 <AttributeRule RuleID="Value" AttributeName="LengthValue"/>

 <AttributeRule RuleID="Value" AttributeName="AreaValue"/>

 <AttributeRule RuleID="Value" AttributeName="VolumeValue"/>

 <AttributeRule RuleID="Value" AttributeName="WeightValue"/>

 <AttributeRule RuleID="Value" AttributeName="TimeValue"/>

 </AttributeRules>

 </EntityRule>

 </EntityRules>

 </AttributeRule>

 </Rules>

 </ConceptTemplate>

 <ConceptTemplate uuid="10000000-0000-0000-0001-000000000007" name="Property Sets" ap-

plicableSchema="IFC4" applicableEntity="IfcPropertySet">

 <Rules>

 <AttributeRule RuleID="Set" AttributeName="Name">

 <EntityRules>

 <EntityRule EntityName="IfcLabel"/>

 </EntityRules>

 </AttributeRule>

 <AttributeRule AttributeName="Description">

 <EntityRules>

 <EntityRule EntityName="IfcText"/>

 </EntityRules>

 </AttributeRule>

 <AttributeRule AttributeName="HasProperties">

 <EntityRules>

 <EntityRule EntityName="IfcSimpleProperty">

 <References>

 <Template ref="88b4aaa9-0925-447c-b009-fe357b7c754e"/>

 </References>

 </EntityRule>

 </EntityRules>

 </AttributeRule>

 </Rules>

 </ConceptTemplate>

 <ConceptTemplate uuid="10000000-0000-0000-0001-000000000002" name="IfcRelDe-

finesByType" applicableSchema="IFC4" applicableEntity="IfcRelDefinesByType">

 <Rules>

 <AttributeRule AttributeName="RelatingType">

 <EntityRules>

 <EntityRule EntityName="IfcTypeObject">

 <AttributeRules>

 <AttributeRule RuleID="Name" AttributeName="Name"/>

 <AttributeRule RuleID="Description" AttributeName="Description"/>

 <AttributeRule RuleID="PredefinedType" AttributeName="PredefinedType"/>

 <AttributeRule AttributeName="HasPropertySets">

 <EntityRules>

 <EntityRule EntityName="IfcPropertySet">

 <References>

 <Template ref="10000000-0000-0000-0001-000000000007"/>

 </References>

 </EntityRule>

 <EntityRule EntityName="IfcElementQuantity">

 <References>

 <Template ref="10000000-0000-0000-0001-000000000008"/>

 </References>

 </EntityRule>

 </EntityRules>

 </AttributeRule>

 <AttributeRule AttributeName="HasAssociations">

 <EntityRules>

 <EntityRule EntityName="IfcRelAssociatesClassification">

 <References>

 <Template ref="10000000-0000-0000-0001-000000000004"/>

 </References>

 </EntityRule>

 </EntityRules>

 </AttributeRule>

 </AttributeRules>

 </EntityRule>

 </EntityRules>

 </AttributeRule>

 </Rules>

 </ConceptTemplate>

 <ConceptTemplate uuid="10000000-0000-0000-0001-000000000004" name="IfcRelAssociates-

Classification" applicableSchema="IFC4" applicableEntity="IfcRelAssociatesClassification">

 <Rules>

 <AttributeRule RuleID="Code" AttributeName="Name">

 <EntityRules>

 <EntityRule EntityName="IfcLabel"/>

 </EntityRules>

 </AttributeRule>

 <AttributeRule AttributeName="RelatingClassification">

 <EntityRules>

 <EntityRule EntityName="IfcClassificationReference">

 <AttributeRules>

 <AttributeRule RuleID="ClassificationReference_ReferencedSource" Attri-

buteName="ReferencedSource">

 <EntityRules>

 <EntityRule EntityName="IfcClassification">

 <AttributeRules>

 <AttributeRule AttributeName="Source">

 <EntityRules>

 <EntityRule EntityName="IfcLabel"/>

 </EntityRules>

 </AttributeRule>

 <AttributeRule RuleID="Table" AttributeName="Name">

 <EntityRules>

 <EntityRule EntityName="IfcLabel"/>

 </EntityRules>

 </AttributeRule>

 <AttributeRule AttributeName="ReferenceTokens">

 <EntityRules>

 <EntityRule EntityName="IfcIdentifier"/>

 </EntityRules>

 </AttributeRule>

 </AttributeRules>

 </EntityRule>

 </EntityRules>

 </AttributeRule>

 <AttributeRule RuleID="Identification" AttributeName="Identification">

 <EntityRules>

 <EntityRule EntityName="IfcIdentifier"/>

 </EntityRules>

 </AttributeRule>

 <AttributeRule RuleID="ClassificationReference_Identification" Attribute-

Name="Identification">

 <EntityRules>

 <EntityRule EntityName="IfcIdentifier"/>

 </EntityRules>

 </AttributeRule>

 <AttributeRule RuleID="ClassificationReference_Name" AttributeName="Name">

 <EntityRules>

 <EntityRule EntityName="IfcLabel"/>

 </EntityRules>

 </AttributeRule>

 <AttributeRule RuleID="ClassificationReference_Description" Attribute-

Name="Description">

 <EntityRules>

 <EntityRule EntityName="IfcText"/>

 </EntityRules>

 </AttributeRule>

 </AttributeRules>

 </EntityRule>

 </EntityRules>

 </AttributeRule>

 </Rules>

 </ConceptTemplate>

 </SubTemplates>

 </ConceptTemplate>

 </Templates>

 <Views><ModelView uuid="00000003-0000-0000-0000-000000000003" name="EU Streamer Model Re-

quirements - V3" applicableSchema="IFC4">

 <Definitions>

 <Definition>

 <Body><![CDATA[]]></Body>

 </Definition>

 </Definitions>

 <ExchangeRequirements>

 <ExchangeRequirement uuid="00000003-0000-0000-0000-000000000105" name="S03-P01 Early

Design by Briefbuilder : S01 Early Design" applicability="import">

 <Definitions>

 <Definition>

 <Body><![CDATA[[English]: Programme of Requirements]]></Body>

 </Definition>

 </Definitions>

 </ExchangeRequirement>

 </ExchangeRequirements>

 <Roots>

 <ConceptRoot uuid="00000003-0000-0000-2000-000000001141" name="PoR Spaces (as trans-

lated from CSV to IFC by AEC3 tool)" applicableRootEntity="IfcSpace">

 <Definitions>

 <Definition>

 <Body><![CDATA[Space object]]></Body>

 </Definition>

 </Definitions>

 <Concepts>

 <Concept uuid="00000003-0000-0000-0000-000000349910" name="Accessibility Labels">

 <Definitions>

 <Definition>

 <Body lang="en"><![CDATA[Scale depending on the position and the category of

users allowed to access]]></Body>

 </Definition>

 </Definitions>

 <Template ref="00000000-0000-0000-0001-000000000001"/>

 <Requirements>

 <Requirement applicability="import" exchangeRequirement="00000003-0000-0000-

0000-000000000105" requirement="mandatory"/>

 </Requirements>

 <TemplateRules operator="and">

 <TemplateRules operator="or">

 <TemplateRule Parameters="Set[Value]='STREAMER_Labels_PoR' AND Prop-

erty[Value]='AccessSecurity' AND Value[Value]='A1'"/>

 <TemplateRule Parameters="Set[Value]='STREAMER_Labels_PoR' AND Prop-

erty[Value]='AccessSecurity' AND Value[Value]='A2'"/>

 <TemplateRule Parameters="Set[Value]='STREAMER_Labels_PoR' AND Prop-

erty[Value]='AccessSecurity' AND Value[Value]='A3'"/>

 <TemplateRule Parameters="Set[Value]='STREAMER_Labels_PoR' AND Prop-

erty[Value]='AccessSecurity' AND Value[Value]='A4'"/>

 <TemplateRule Parameters="Set[Value]='STREAMER_Labels_PoR' AND Prop-

erty[Value]='AccessSecurity' AND Value[Value]='A5'"/>

 <TemplateRules operator="and">

 <TemplateRules operator="nor">

 <TemplateRule Parameters="Set[Value]='STREAMER_Labels_PoR' AND Prop-

erty[Value]='AccessSecurity'"/>

 </TemplateRules>

 <TemplateRules operator="or">

 <TemplateRule Parameters="T_Set[Value]='STREAMER_Labels_PoR' AND T_Prop-

erty[Value]='AccessSecurity' AND T_Value[Exists]='A1'"/>

 <TemplateRule Parameters="T_Set[Value]='STREAMER_Labels_PoR' AND T_Prop-

erty[Value]='AccessSecurity' AND T_Value[Exists]='A2'"/>

 <TemplateRule Parameters="T_Set[Value]='STREAMER_Labels_PoR' AND T_Prop-

erty[Value]='AccessSecurity' AND T_Value[Exists]='A3'"/>

 <TemplateRule Parameters="T_Set[Value]='STREAMER_Labels_PoR' AND T_Prop-

erty[Value]='AccessSecurity' AND T_Value[Exists]='A4'"/>

 <TemplateRule Parameters="T_Set[Value]='STREAMER_Labels_PoR' AND T_Prop-

erty[Value]='AccessSecurity' AND T_Value[Exists]='A5'"/>

 </TemplateRules>

 </TemplateRules>

 </TemplateRules>

 </TemplateRules>

 </Concept>

 <Concept uuid="00000003-0000-0000-0000-000000349922" name="Bouwcollege Layer">

 <Definitions>

 <Definition>

 <Body lang="en"><![CDATA[]]></Body>

 </Definition>

 </Definitions>

 <Template ref="00000000-0000-0000-0001-000000000001"/>

 <Requirements>

 <Requirement applicability="import" exchangeRequirement="00000003-0000-0000-

0000-000000000105" requirement="mandatory"/>

 </Requirements>

 <TemplateRules operator="and">

 <TemplateRules operator="or">

 <TemplateRule Parameters="Set[Value]='STREAMER_Labels_PoR' AND Prop-

erty[Value]='BouwcollegeLayer' AND Value[Value]='H'"/>

 <TemplateRule Parameters="Set[Value]='STREAMER_Labels_PoR' AND Prop-

erty[Value]='BouwcollegeLayer' AND Value[Value]='HF'"/>

 <TemplateRule Parameters="Set[Value]='STREAMER_Labels_PoR' AND Prop-

erty[Value]='BouwcollegeLayer' AND Value[Value]='I'"/>

 <TemplateRule Parameters="Set[Value]='STREAMER_Labels_PoR' AND Prop-

erty[Value]='BouwcollegeLayer' AND Value[Value]='O'"/>

 <TemplateRules operator="and">

 <TemplateRules operator="nor">

 <TemplateRule Parameters="Set[Value]='STREAMER_Labels_PoR' AND Prop-

erty[Value]='BouwcollegeLayer'"/>

 </TemplateRules>

 <TemplateRules operator="or">

 <TemplateRule Parameters="T_Set[Value]='STREAMER_Labels_PoR' AND T_Prop-

erty[Value]='BouwcollegeLayer' AND T_Value[Value]='H'"/>

 <TemplateRule Parameters="T_Set[Value]='STREAMER_Labels_PoR' AND T_Prop-

erty[Value]='BouwcollegeLayer' AND T_Value[Value]='HF'"/>

 <TemplateRule Parameters="T_Set[Value]='STREAMER_Labels_PoR' AND T_Prop-

erty[Value]='BouwcollegeLayer' AND T_Value[Value]='I'"/>

 <TemplateRule Parameters="T_Set[Value]='STREAMER_Labels_PoR' AND T_Prop-

erty[Value]='BouwcollegeLayer' AND T_Value[Value]='O'"/>

 </TemplateRules>

 </TemplateRules>

 </TemplateRules>

 </TemplateRules>

 </Concept>

 <Concept uuid="00000003-0000-0000-0000-000000349911" name="Comfort Class">

 <Definitions>

 <Definition>

 <Body lang="en"><![CDATA[Scale depending on the expedient to assure the

safety according to activities and functions]]></Body>

 </Definition>

 </Definitions>

 <Template ref="00000000-0000-0000-0001-000000000001"/>

 <Requirements>

 <Requirement applicability="import" exchangeRequirement="00000003-0000-0000-

0000-000000000105" requirement="mandatory"/>

 </Requirements>

 <TemplateRules operator="and">

 <TemplateRules operator="or">

 <TemplateRule Parameters="Set[Value]='STREAMER_Labels_PoR' AND Prop-

erty[Value]='ComfortClass' AND Value[Value]='CT1'"/>

 <TemplateRule Parameters="Set[Value]='STREAMER_Labels_PoR' AND Prop-

erty[Value]='ComfortClass' AND Value[Value]='CT2'"/>

 <TemplateRule Parameters="Set[Value]='STREAMER_Labels_PoR' AND Prop-

erty[Value]='ComfortClass' AND Value[Value]='CT3'"/>

 <TemplateRule Parameters="Set[Value]='STREAMER_Labels_PoR' AND Prop-

erty[Value]='ComfortClass' AND Value[Value]='CT4'"/>

 <TemplateRule Parameters="Set[Value]='STREAMER_Labels_PoR' AND Prop-

erty[Value]='ComfortClass' AND Value[Value]='CT5'"/>

 <TemplateRule Parameters="Set[Value]='STREAMER_Labels_PoR' AND Prop-

erty[Value]='ComfortClass' AND Value[Value]='CT6'"/>

 <TemplateRule Parameters="Set[Value]='STREAMER_Labels_PoR' AND Prop-

erty[Value]='ComfortClass' AND Value[Value]='CT7'"/>

 <TemplateRule Parameters="Set[Value]='STREAMER_Labels_PoR' AND Prop-

erty[Value]='ComfortClass' AND Value[Value]='CT8'"/>

 <TemplateRules operator="and">

 <TemplateRules operator="nor">

 <TemplateRule Parameters="Set[Value]='STREAMER_Labels_PoR' AND Prop-

erty[Value]='ComfortClass'"/>

 </TemplateRules>

 <TemplateRules operator="or">

 <TemplateRule Parameters="T_Set[Value]='STREAMER_Labels_PoR' AND T_Prop-

erty[Value]='ComfortClass' AND T_Value[Value]='CT1'"/>

 <TemplateRule Parameters="T_Set[Value]='STREAMER_Labels_PoR' AND T_Prop-

erty[Value]='ComfortClass' AND T_Value[Value]='CT2'"/>

 <TemplateRule Parameters="T_Set[Value]='STREAMER_Labels_PoR' AND T_Prop-

erty[Value]='ComfortClass' AND T_Value[Value]='CT3'"/>

 <TemplateRule Parameters="T_Set[Value]='STREAMER_Labels_PoR' AND T_Prop-

erty[Value]='ComfortClass' AND T_Value[Value]='CT4'"/>

 <TemplateRule Parameters="T_Set[Value]='STREAMER_Labels_PoR' AND T_Prop-

erty[Value]='ComfortClass' AND T_Value[Value]='CT5'"/>

 <TemplateRule Parameters="T_Set[Value]='STREAMER_Labels_PoR' AND T_Prop-

erty[Value]='ComfortClass' AND T_Value[Value]='CT6'"/>

 <TemplateRule Parameters="T_Set[Value]='STREAMER_Labels_PoR' AND T_Prop-

erty[Value]='ComfortClass' AND T_Value[Value]='CT7'"/>

 <TemplateRule Parameters="T_Set[Value]='STREAMER_Labels_PoR' AND T_Prop-

erty[Value]='ComfortClass' AND T_Value[Value]='CT8'"/>

 </TemplateRules>

 </TemplateRules>

 </TemplateRules>

 </TemplateRules>

 </Concept>

 <Concept uuid="00000003-0000-0000-0000-000000349912" name="Construction">

 <Definitions>

 <Definition>

 <Body lang="en"><![CDATA[Scale depending on requirements related to floor

strength, shielding against radiation, floor height, air tightness]]></Body>

 </Definition>

 </Definitions>

 <Template ref="00000000-0000-0000-0001-000000000001"/>

 <Requirements>

 <Requirement applicability="import" exchangeRequirement="00000003-0000-0000-

0000-000000000105" requirement="mandatory"/>

 </Requirements>

 <TemplateRules operator="and">

 <TemplateRules operator="or">

 <TemplateRule Parameters="Set[Value]='STREAMER_Labels_PoR' AND Prop-

erty[Value]='Construction' AND Value[Value]='C1'"/>

 <TemplateRule Parameters="Set[Value]='STREAMER_Labels_PoR' AND Prop-

erty[Value]='Construction' AND Value[Value]='C2'"/>

 <TemplateRule Parameters="Set[Value]='STREAMER_Labels_PoR' AND Prop-

erty[Value]='Construction' AND Value[Value]='C3'"/>

 <TemplateRule Parameters="Set[Value]='STREAMER_Labels_PoR' AND Prop-

erty[Value]='Construction' AND Value[Value]='C4'"/>

 <TemplateRule Parameters="Set[Value]='STREAMER_Labels_PoR' AND Prop-

erty[Value]='Construction' AND Value[Value]='C5'"/>

 <TemplateRule Parameters="Set[Value]='STREAMER_Labels_PoR' AND Prop-

erty[Value]='Construction' AND Value[Value]='C6'"/>

 <TemplateRule Parameters="Set[Value]='STREAMER_Labels_PoR' AND Prop-

erty[Value]='Construction' AND Value[Value]='C7'"/>

 <TemplateRules operator="and">

 <TemplateRules operator="nor">

 <TemplateRule Parameters="Set[Value]='STREAMER_Labels_PoR' AND Prop-

erty[Value]='Construction'"/>

 </TemplateRules>

 <TemplateRules operator="or">

 <TemplateRule Parameters="T_Set[Value]='STREAMER_Labels_PoR' AND T_Prop-

erty[Value]='Construction' AND T_Value[Value]='C1'"/>

 <TemplateRule Parameters="T_Set[Value]='STREAMER_Labels_PoR' AND T_Prop-

erty[Value]='Construction' AND T_Value[Value]='C2'"/>

 <TemplateRule Parameters="T_Set[Value]='STREAMER_Labels_PoR' AND T_Prop-

erty[Value]='Construction' AND T_Value[Value]='C3'"/>

 <TemplateRule Parameters="T_Set[Value]='STREAMER_Labels_PoR' AND T_Prop-

erty[Value]='Construction' AND T_Value[Value]='C4'"/>

 <TemplateRule Parameters="T_Set[Value]='STREAMER_Labels_PoR' AND T_Prop-

erty[Value]='Construction' AND T_Value[Value]='C5'"/>

 <TemplateRule Parameters="T_Set[Value]='STREAMER_Labels_PoR' AND T_Prop-

erty[Value]='Construction' AND T_Value[Value]='C6'"/>

 <TemplateRule Parameters="T_Set[Value]='STREAMER_Labels_PoR' AND T_Prop-

erty[Value]='Construction' AND T_Value[Value]='C7'"/>

 </TemplateRules>

 </TemplateRules>

 </TemplateRules>

 </TemplateRules>

 </Concept>

 <Concept uuid="00000003-0000-0000-0000-000000014624" name="Equipment">

 <Definitions>

 <Definition>

 <Body lang="en"><![CDATA[Scale depending on the type of function, high elec-

tric power needed, medical gasses, ITC data points]]></Body>

 </Definition>

 </Definitions>

 <Template ref="00000000-0000-0000-0001-000000000001"/>

 <Requirements>

 <Requirement applicability="import" exchangeRequirement="00000003-0000-0000-

0000-000000000105" requirement="mandatory"/>

 </Requirements>

 <TemplateRules operator="and">

 <TemplateRules operator="or">

 <TemplateRule Parameters="Set[Value]='STREAMER_Labels_PoR' AND Prop-

erty[Value]='Equipment' AND Value[Value]='EQ1'"/>

 <TemplateRule Parameters="Set[Value]='STREAMER_Labels_PoR' AND Prop-

erty[Value]='Equipment' AND Value[Value]='EQ2'"/>

 <TemplateRule Parameters="Set[Value]='STREAMER_Labels_PoR' AND Prop-

erty[Value]='Equipment' AND Value[Value]='EQ3'"/>

 <TemplateRule Parameters="Set[Value]='STREAMER_Labels_PoR' AND Prop-

erty[Value]='Equipment' AND Value[Value]='EQ4'"/>

 <TemplateRule Parameters="Set[Value]='STREAMER_Labels_PoR' AND Prop-

erty[Value]='Equipment' AND Value[Value]='EQ5'"/>

 <TemplateRule Parameters="Set[Value]='STREAMER_Labels_PoR' AND Prop-

erty[Value]='Equipment' AND Value[Value]='EQ6'"/>

 <TemplateRule Parameters="Set[Value]='STREAMER_Labels_PoR' AND Prop-

erty[Value]='Equipment' AND Value[Value]='EQ7'"/>

 <TemplateRules operator="and">

 <TemplateRules operator="nor">

 <TemplateRule Parameters="Set[Value]='STREAMER_Labels_PoR' AND Prop-

erty[Value]='Equipment'"/>

 </TemplateRules>

 <TemplateRules operator="or">

 <TemplateRule Parameters="T_Set[Value]='STREAMER_Labels_PoR' AND T_Prop-

erty[Value]='Equipment' AND T_Value[Value]='EQ1'"/>

 <TemplateRule Parameters="T_Set[Value]='STREAMER_Labels_PoR' AND T_Prop-

erty[Value]='Equipment' AND T_Value[Value]='EQ2'"/>

 <TemplateRule Parameters="T_Set[Value]='STREAMER_Labels_PoR' AND T_Prop-

erty[Value]='Equipment' AND T_Value[Value]='EQ3'"/>

 <TemplateRule Parameters="T_Set[Value]='STREAMER_Labels_PoR' AND T_Prop-

erty[Value]='Equipment' AND T_Value[Value]='EQ4'"/>

 <TemplateRule Parameters="T_Set[Value]='STREAMER_Labels_PoR' AND T_Prop-

erty[Value]='Equipment' AND T_Value[Value]='EQ5'"/>

 <TemplateRule Parameters="T_Set[Value]='STREAMER_Labels_PoR' AND T_Prop-

erty[Value]='Equipment' AND T_Value[Value]='EQ6'"/>

 <TemplateRule Parameters="T_Set[Value]='STREAMER_Labels_PoR' AND T_Prop-

erty[Value]='Equipment' AND T_Value[Value]='EQ7'"/>

 </TemplateRules>

 </TemplateRules>

 </TemplateRules>

 </TemplateRules>

 </Concept>

 <Concept uuid="00000003-0000-0000-0000-000000014628" name="Hygiene Class">

 <Definitions>

 <Definition>

 <Body lang="en"><![CDATA[Scale depending on the level of hygienic condition

requested in the different type of spaces]]></Body>

 </Definition>

 </Definitions>

 <Template ref="00000000-0000-0000-0001-000000000001"/>

 <Requirements>

 <Requirement applicability="import" exchangeRequirement="00000003-0000-0000-

0000-000000000105" requirement="mandatory"/>

 </Requirements>

 <TemplateRules operator="and">

 <TemplateRules operator="or">

 <TemplateRule Parameters="Set[Value]='STREAMER_Labels_PoR' AND Prop-

erty[Value]='HygienicClass' AND Value[Value]='H1'"/>

 <TemplateRule Parameters="Set[Value]='STREAMER_Labels_PoR' AND Prop-

erty[Value]='HygienicClass' AND Value[Value]='H2'"/>

 <TemplateRule Parameters="Set[Value]='STREAMER_Labels_PoR' AND Prop-

erty[Value]='HygienicClass' AND Value[Value]='H3'"/>

 <TemplateRule Parameters="Set[Value]='STREAMER_Labels_PoR' AND Prop-

erty[Value]='HygienicClass' AND Value[Value]='H4'"/>

 <TemplateRule Parameters="Set[Value]='STREAMER_Labels_PoR' AND Prop-

erty[Value]='HygienicClass' AND Value[Value]='H5'"/>

 <TemplateRules operator="and">

 <TemplateRules operator="nor">

 <TemplateRule Parameters="Set[Value]='STREAMER_Labels_PoR' AND Prop-

erty[Value]='HygienicClass'"/>

 </TemplateRules>

 <TemplateRules operator="or">

 <TemplateRule Parameters="T_Set[Value]='STREAMER_Labels_PoR' AND T_Prop-

erty[Value]='HygienicClass' AND T_Value[Value]='H1'"/>

 <TemplateRule Parameters="T_Set[Value]='STREAMER_Labels_PoR' AND T_Prop-

erty[Value]='HygienicClass' AND T_Value[Value]='H2'"/>

 <TemplateRule Parameters="T_Set[Value]='STREAMER_Labels_PoR' AND T_Prop-

erty[Value]='HygienicClass' AND T_Value[Value]='H3'"/>

 <TemplateRule Parameters="T_Set[Value]='STREAMER_Labels_PoR' AND T_Prop-

erty[Value]='HygienicClass' AND T_Value[Value]='H4'"/>

 <TemplateRule Parameters="T_Set[Value]='STREAMER_Labels_PoR' AND T_Prop-

erty[Value]='HygienicClass' AND T_Value[Value]='H5'"/>

 </TemplateRules>

 </TemplateRules>

 </TemplateRules>

 </TemplateRules>

 </Concept>

 <Concept uuid="00000003-0000-0000-0000-000000011454" name="Number of occurrences">

 <Definitions>

 <Definition>

 <Body lang="en"><![CDATA[Example: There should be x rooms of a room

type.]]></Body>

 </Definition>

 </Definitions>

 <Template ref="00000000-0000-0000-0001-000000000001"/>

 <Requirements>

 <Requirement applicability="import" exchangeRequirement="00000003-0000-0000-

0000-000000000105" requirement="mandatory"/>

 </Requirements>

 <TemplateRules operator="and">

 <TemplateRules operator="or">

 <TemplateRule Parameters="Set[Value]='STREAMER_PoR' AND Property[Value]='Oc-

currences' AND Value[Exists]=TRUE"/>

 <TemplateRules operator="and">

 <TemplateRules operator="nor">

 <TemplateRule Parameters="Set[Value]='STREAMER_PoR' AND Prop-

erty[Value]='Occurrences'"/>

 </TemplateRules>

 <TemplateRules operator="or">

 <TemplateRule Parameters="T_Set[Value]='STREAMER_PoR' AND T_Prop-

erty[Value]='Occurrences' AND T_Value[Exists]=TRUE"/>

 </TemplateRules>

 </TemplateRules>

 </TemplateRules>

 </TemplateRules>

 </Concept>

 <Concept uuid="00000003-0000-0000-0000-000000043617" name="Required area">

 <Definitions>

 <Definition>

 <Body lang="en"><![CDATA[should be matched (Stefan 10% less, 30% more are

tolerable)]]></Body>

 </Definition>

 </Definitions>

 <Template ref="00000000-0000-0000-0001-000000000001"/>

 <Requirements>

 <Requirement applicability="import" exchangeRequirement="00000003-0000-0000-

0000-000000000105" requirement="mandatory"/>

 </Requirements>

 <TemplateRules operator="and">

 <TemplateRules operator="or">

 <TemplateRule Parameters="Set[Value]='STREAMER_PoR' AND Prop-

erty[Value]='GrossAreaPlanned' AND Value[Exists]=TRUE"/>

 <TemplateRules operator="and">

 <TemplateRules operator="nor">

 <TemplateRule Parameters="Set[Value]='STREAMER_PoR' AND Prop-

erty[Value]='GrossAreaPlanned'"/>

 </TemplateRules>

 <TemplateRules operator="or">

 <TemplateRule Parameters="T_Set[Value]='STREAMER_PoR' AND T_Prop-

erty[Value]='GrossAreaPlanned' AND T_Value[Exists]=TRUE"/>

 </TemplateRules>

 </TemplateRules>

 </TemplateRules>

 </TemplateRules>

 </Concept>

 <Concept uuid="00000003-0000-0000-0000-000000043618" name="Room Type Requirement">

 <Definitions>

 <Definition>

 <Body lang="en"><![CDATA[]]></Body>

 </Definition>

 </Definitions>

 <Template ref="00000000-0000-0000-0001-000000000001"/>

 <Requirements>

 <Requirement applicability="import" exchangeRequirement="00000003-0000-0000-

0000-000000000105" requirement="mandatory"/>

 </Requirements>

 <TemplateRules operator="and">

 <TemplateRules operator="or">

 <TemplateRule Parameters="Set[Value]='STREAMER_PoR' AND Property[Value]='Ob-

jectType' AND Value[Exists]=TRUE"/>

 <TemplateRules operator="and">

 <TemplateRules operator="nor">

 <TemplateRule Parameters="Set[Value]='STREAMER_PoR' AND Prop-

erty[Value]='ObjectType'"/>

 </TemplateRules>

 <TemplateRules operator="or">

 <TemplateRule Parameters="T_Set[Value]='STREAMER_PoR' AND T_Prop-

erty[Value]='ObjectType' AND T_Value[Exists]=TRUE"/>

 </TemplateRules>

 </TemplateRules>

 </TemplateRules>

 </TemplateRules>

 </Concept>

 <Concept uuid="00000003-0000-0000-0000-000000343618" name="Functional Area Type">

 <Definitions>

 <Definition>

 <Body lang="en"><![CDATA[]]></Body>

 </Definition>

 </Definitions>

 <Template ref="00000000-0000-0000-0001-000000000001"/>

 <Requirements>

 <Requirement applicability="import" exchangeRequirement="00000003-0000-0000-

0000-000000000105" requirement="mandatory"/>

 </Requirements>

 <TemplateRules operator="and">

 <TemplateRules operator="or">

 <TemplateRule Parameters="Set[Value]='STREAMER_PoR' AND Prop-

erty[Value]='FunctionalAreaType' AND Value[Exists]=TRUE"/>

 <TemplateRules operator="and">

 <TemplateRules operator="nor">

 <TemplateRule Parameters="Set[Value]='STREAMER_PoR' AND Prop-

erty[Value]='FunctionalAreaType'"/>

 </TemplateRules>

 <TemplateRules operator="or">

 <TemplateRule Parameters="T_Set[Value]='STREAMER_PoR' AND T_Prop-

erty[Value]='FunctionalAreaType' AND T_Value[Exists]=TRUE"/>

 </TemplateRules>

 </TemplateRules>

 </TemplateRules>

 </TemplateRules>

 </Concept>

 <Concept uuid="00000003-0000-0000-0000-000000014664" name="User Profile">

 <Definitions>

 <Definition>

 <Body lang="en"><![CDATA[Scale depending on the usage time of spaces and op-

erating hours]]></Body>

 </Definition>

 </Definitions>

 <Template ref="00000000-0000-0000-0001-000000000001"/>

 <Requirements>

 <Requirement applicability="import" exchangeRequirement="00000003-0000-0000-

0000-000000000105" requirement="mandatory"/>

 </Requirements>

 <TemplateRules operator="and">

 <TemplateRules operator="or">

 <TemplateRule Parameters="Set[Value]='STREAMER_Labels_PoR' AND Prop-

erty[Value]='UserProfile' AND Value[Value]='U1'"/>

 <TemplateRule Parameters="Set[Value]='STREAMER_Labels_PoR' AND Prop-

erty[Value]='UserProfile' AND Value[Value]='U2'"/>

 <TemplateRule Parameters="Set[Value]='STREAMER_Labels_PoR' AND Prop-

erty[Value]='UserProfile' AND Value[Value]='U3'"/>

 <TemplateRule Parameters="Set[Value]='STREAMER_Labels_PoR' AND Prop-

erty[Value]='UserProfile' AND Value[Value]='U4'"/>

 <TemplateRules operator="and">

 <TemplateRules operator="nor">

 <TemplateRule Parameters="Set[Value]='STREAMER_Labels_PoR' AND Prop-

erty[Value]='UserProfile'"/>

 </TemplateRules>

 <TemplateRules operator="or">

 <TemplateRule Parameters="T_Set[Value]='STREAMER_Labels_PoR' AND T_Prop-

erty[Value]='UserProfile' AND T_Value[Value]='U1'"/>

 <TemplateRule Parameters="T_Set[Value]='STREAMER_Labels_PoR' AND T_Prop-

erty[Value]='UserProfile' AND T_Value[Value]='U2'"/>

 <TemplateRule Parameters="T_Set[Value]='STREAMER_Labels_PoR' AND T_Prop-

erty[Value]='UserProfile' AND T_Value[Value]='U3'"/>

 <TemplateRule Parameters="T_Set[Value]='STREAMER_Labels_PoR' AND T_Prop-

erty[Value]='UserProfile' AND T_Value[Value]='U4'"/>

 </TemplateRules>

 </TemplateRules>

 </TemplateRules>

 </TemplateRules>

 </Concept>

 <Concept uuid="00000003-0000-0000-0000-000000014634" name="Name">

 <Definitions>

 <Definition>

 <Body lang="en"><![CDATA[[Id of an element that is typically used by humans

to identify elements.]]></Body>

 </Definition>

 </Definitions>

 <Template ref="00000000-0000-0000-0001-000000000001"/>

 <Requirements>

 <Requirement applicability="import" exchangeRequirement="00000003-0000-0000-

0000-000000000105" requirement="mandatory"/>

 </Requirements>

 <TemplateRules operator="and">

 <TemplateRule Parameters="Name[Exists]=TRUE"/>

 </TemplateRules>

 </Concept>

 </Concepts>

 </ConceptRoot>

 </Roots>

 </ModelView></Views>

</mvdXML>

mvdXML for PoR, EDC and Energy Simulation

The following mvdXML was exported from BIM-Q and specifies all Exchange Requirements in a single mvdXML

(see Figure 42). Accordingly, there are three <ExchangeRequirement> elements. This example enables to show

how concepts can be linked to several Exchange Requirements, which is useful if same data is required in different

ERs such as the labels that shall be included not only in the PoR dataset but also in the EDC output. The use of

several ERs within the same mvdXML is shown in Figure 40.

Figure 40: XBIM user interface for selecting one of the three ERs contained in the mvdXML file.

The used ConceptTemplates are derived from the latest IFC4 specification that are used in the buildingSMART

software certification started in July 2016. Two ConceptTemplates have been added to deal with STREAMER re-

quirements5: (1) a template for checking assignment of spaces to zones and (2) a template for checking existence

of space boundaries. Furthermore, for sharing the requirement definition for PoR and EDC output data it was nec-

essary to add an exception to the checking definition of space instances. This means to add a constraint to the

applicability definition that excludes checking of “Corridor” space types that are produced by the EDC but do not

have any room requirements (see Figure 41).

5 STREAMER Labels can be defined using the existing property set template.

Figure 41: BIM-Q user interface for adding applicability constraints for checking space instances for PoR and
EDC output.

The mvdXML export was finally adjusted by changing the schema name to support checking of IFC2X3 files as

used in the STREAMER examples.

Figure 42: Required (MAN) data for the different Exchange Requirements.

<?xml version="1.0" encoding="UTF-8"?>

<mvdXML xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://buildingsmart-

tech.org/mvd/XML/1.1" uuid="7e3a6d8d-913c-4505-a988-6ab72f6b6b9d" name="" status="sample"

xsi:schemaLocation="http://buildingsmart-tech.org/mvd/XML/1.1 http://www.buildingsmart-

tech.org/mvd/XML/1.1/mvdXML_V1.1_add1.xsd">

 <Templates>

 <ConceptTemplate uuid="805deb96-2684-4bc5-a9ad-3a29199dc023" name="Project Context" sta-

tus="sample" applicableSchema="IFC2X3" applicableEntity="IfcContext">

 <Definitions>

 <Definition>

 <Body><![CDATA]]></Body>

 </Definition>

 </Definitions>

 <Rules>

 <AttributeRule AttributeName="LongName">

 <EntityRules>

 <EntityRule EntityName="IfcLabel"/>

 </EntityRules>

 </AttributeRule>

 <AttributeRule AttributeName="ObjectType">

 <EntityRules>

 <EntityRule EntityName="IfcLabel"/>

 </EntityRules>

 </AttributeRule>

 <AttributeRule AttributeName="Phase">

 <EntityRules>

 <EntityRule EntityName="IfcLabel"/>

 </EntityRules>

 </AttributeRule>

 </Rules>

 <SubTemplates>

 <ConceptTemplate uuid="ab1e2cfd-9f21-4f4a-b6af-cc26d84e45ac" name="Project Declara-

tion" status="sample" applicableSchema="IFC2X3" applicableEntity="IfcContext">

 <Definitions>

 <Definition>

 <Body><![CDATA]]></Body>

 </Definition>

 </Definitions>

 <Rules>

 <AttributeRule AttributeName="Declares">

 <EntityRules>

 <EntityRule EntityName="IfcRelDeclares">

 <AttributeRules>

 <AttributeRule RuleID="Type" AttributeName="RelatedDefinitions"/>

 </AttributeRules>

 </EntityRule>

 </EntityRules>

 </AttributeRule>

 <AttributeRule AttributeName="Phase">

 <EntityRules>

 <EntityRule EntityName="IfcLabel"/>

 </EntityRules>

 </AttributeRule>

 <AttributeRule AttributeName="ObjectType">

 <EntityRules>

 <EntityRule EntityName="IfcLabel"/>

 </EntityRules>

 </AttributeRule>

 <AttributeRule AttributeName="LongName">

 <EntityRules>

 <EntityRule EntityName="IfcLabel"/>

 </EntityRules>

 </AttributeRule>

 </Rules>

 <SubTemplates>

 <ConceptTemplate uuid="634e27f7-7edb-4e22-b8cc-25f1cdc765ce" name="Project Type

Definitions" status="sample" applicableSchema="IFC2X3" applicableEntity="IfcContext">

 <Definitions>

 <Definition>

 <Body><![CDATA[]]></Body>

 </Definition>

 <Definition>

 <Body lang="tt"><![CDATA[]]></Body>

 <Link lang="tt" category="definition" title="AUTOMATIC"

href=""><![CDATA[]]></Link>

 </Definition>

 </Definitions>

 <Rules>

 <AttributeRule AttributeName="Declares">

 <EntityRules>

 <EntityRule EntityName="IfcRelDeclares">

 <AttributeRules>

 <AttributeRule RuleID="RelatedTypes" AttributeName="RelatedDefini-

tions">

 <EntityRules>

 <EntityRule EntityName="IfcTypeObject"/>

 </EntityRules>

 </AttributeRule>

 </AttributeRules>

 </EntityRule>

 </EntityRules>

 </AttributeRule>

 <AttributeRule AttributeName="Phase">

 <EntityRules>

 <EntityRule EntityName="IfcLabel"/>

 </EntityRules>

 </AttributeRule>

 <AttributeRule AttributeName="ObjectType">

 <EntityRules>

 <EntityRule EntityName="IfcLabel"/>

 </EntityRules>

 </AttributeRule>

 <AttributeRule AttributeName="LongName">

 <EntityRules>

 <EntityRule EntityName="IfcLabel"/>

 </EntityRules>

 </AttributeRule>

 </Rules>

 </ConceptTemplate>

 </SubTemplates>

 </ConceptTemplate>

 <ConceptTemplate uuid="4ccaac0c-88f8-4c1d-91fd-2214d0e513c4" name="Project Units" sta-

tus="sample" applicableSchema="IFC2X3" applicableEntity="IfcContext">

 <Definitions>

 <Definition>

 <Body><![CDATA[]]></Body>

 </Definition>

 <Definition>

 <Body lang="tt"><![CDATA[]]></Body>

 <Link lang="tt" category="definition" title="AUTOMATIC"

href=""><![CDATA[]]></Link>

 </Definition>

 </Definitions>

 <Rules>

 <AttributeRule RuleID="HasUnits" AttributeName="UnitsInContext">

 <EntityRules>

 <EntityRule EntityName="IfcUnitAssignment">

 <AttributeRules>

 <AttributeRule AttributeName="Units">

 <EntityRules>

 <EntityRule EntityName="IfcDerivedUnit">

 <AttributeRules>

 <AttributeRule RuleID="DerivedUnitType" AttributeName="UnitType">

 <EntityRules>

 <EntityRule EntityName="IfcDerivedUnitEnum"/>

 </EntityRules>

 </AttributeRule>

 <AttributeRule AttributeName="Elements">

 <EntityRules>

 <EntityRule EntityName="IfcDerivedUnitElement">

 <AttributeRules>

 <AttributeRule AttributeName="Unit">

 <EntityRules>

 <EntityRule EntityName="IfcNamedUnit"/>

 </EntityRules>

 </AttributeRule>

 </AttributeRules>

 </EntityRule>

 </EntityRules>

 </AttributeRule>

 <AttributeRule AttributeName="UserDefinedType">

 <EntityRules>

 <EntityRule EntityName="IfcLabel"/>

 </EntityRules>

 </AttributeRule>

 </AttributeRules>

 </EntityRule>

 <EntityRule EntityName="IfcMonetaryUnit">

 <AttributeRules>

 <AttributeRule AttributeName="Currency">

 <EntityRules>

 <EntityRule EntityName="IfcLabel"/>

 </EntityRules>

 </AttributeRule>

 </AttributeRules>

 </EntityRule>

 <EntityRule EntityName="IfcSIUnit">

 <AttributeRules>

 <AttributeRule RuleID="SIUnitType" AttributeName="UnitType">

 <EntityRules>

 <EntityRule EntityName="IfcUnitEnum"/>

 </EntityRules>

 </AttributeRule>

 <AttributeRule AttributeName="Prefix">

 <EntityRules>

 <EntityRule EntityName="IfcSIPrefix"/>

 </EntityRules>

 </AttributeRule>

 <AttributeRule RuleID="SIUnitName" AttributeName="Name">

 <EntityRules>

 <EntityRule EntityName="IfcSIUnitName"/>

 </EntityRules>

 </AttributeRule>

 </AttributeRules>

 </EntityRule>

 <EntityRule EntityName="IfcConversionBasedUnit">

 <AttributeRules>

 <AttributeRule AttributeName="Dimensions">

 <EntityRules>

 <EntityRule EntityName="IfcDimensionalExponents"/>

 </EntityRules>

 </AttributeRule>

 <AttributeRule RuleID="ConversionUnitType" AttributeName="Unit-

Type">

 <EntityRules>

 <EntityRule EntityName="IfcUnitEnum"/>

 </EntityRules>

 </AttributeRule>

 <AttributeRule RuleID="ConversionUnitName" AttributeName="Name">

 <EntityRules>

 <EntityRule EntityName="IfcLabel"/>

 </EntityRules>

 </AttributeRule>

 <AttributeRule AttributeName="ConversionFactor">

 <EntityRules>

 <EntityRule EntityName="IfcMeasureWithUnit"/>

 </EntityRules>

 </AttributeRule>

 </AttributeRules>

 </EntityRule>

 <EntityRule EntityName="IfcConversionBasedUnitWithOffset">

 <AttributeRules>

 <AttributeRule AttributeName="Dimensions">

 <EntityRules>

 <EntityRule EntityName="IfcDimensionalExponents"/>

 </EntityRules>

 </AttributeRule>

 <AttributeRule AttributeName="UnitType">

 <EntityRules>

 <EntityRule EntityName="IfcUnitEnum"/>

 </EntityRules>

 </AttributeRule>

 <AttributeRule AttributeName="Name">

 <EntityRules>

 <EntityRule EntityName="IfcLabel"/>

 </EntityRules>

 </AttributeRule>

 <AttributeRule AttributeName="ConversionFactor">

 <EntityRules>

 <EntityRule EntityName="IfcMeasureWithUnit"/>

 </EntityRules>

 </AttributeRule>

 <AttributeRule AttributeName="ConversionOffset">

 <EntityRules>

 <EntityRule EntityName="IfcReal"/>

 </EntityRules>

 </AttributeRule>

 </AttributeRules>

 </EntityRule>

 </EntityRules>

 </AttributeRule>

 </AttributeRules>

 </EntityRule>

 </EntityRules>

 </AttributeRule>

 <AttributeRule AttributeName="Phase">

 <EntityRules>

 <EntityRule EntityName="IfcLabel"/>

 </EntityRules>

 </AttributeRule>

 <AttributeRule AttributeName="ObjectType">

 <EntityRules>

 <EntityRule EntityName="IfcLabel"/>

 </EntityRules>

 </AttributeRule>

 <AttributeRule AttributeName="LongName">

 <EntityRules>

 <EntityRule EntityName="IfcLabel"/>

 </EntityRules>

 </AttributeRule>

 </Rules>

 </ConceptTemplate>

 <ConceptTemplate uuid="38dac6f0-997c-4544-9bca-b6326b9a3e4b" name="Project Representa-

tion Context" status="sample" applicableSchema="IFC2X3" applicableEntity="IfcContext">

 <Definitions>

 <Definition>

 <Body><![CDATA[]]></Body>

 </Definition>

 </Definitions>

 <Rules>

 <AttributeRule AttributeName="RepresentationContexts">

 <EntityRules>

 <EntityRule EntityName="IfcGeometricRepresentationContext">

 <AttributeRules>

 <AttributeRule RuleID="ContextIdentifier" AttributeName="ContextIdenti-

fier">

 <EntityRules>

 <EntityRule EntityName="IfcLabel"/>

 </EntityRules>

 </AttributeRule>

 <AttributeRule RuleID="ContextType" AttributeName="ContextType">

 <EntityRules>

 <EntityRule EntityName="IfcLabel"/>

 </EntityRules>

 </AttributeRule>

 <AttributeRule AttributeName="Precision"/>

 <AttributeRule AttributeName="CoordinateSpaceDimension">

 <EntityRules>

 <EntityRule EntityName="IfcDimensionCount"/>

 </EntityRules>

 </AttributeRule>

 <AttributeRule AttributeName="WorldCoordinateSystem">

 <EntityRules>

 <EntityRule EntityName="IfcAxis2Placement3D">

 <AttributeRules>

 <AttributeRule AttributeName="Location">

 <EntityRules>

 <EntityRule EntityName="IfcCartesianPoint"/>

 </EntityRules>

 </AttributeRule>

 <AttributeRule AttributeName="Axis">

 <EntityRules>

 <EntityRule EntityName="IfcDirection"/>

 </EntityRules>

 </AttributeRule>

 <AttributeRule AttributeName="RefDirection">

 <EntityRules>

 <EntityRule EntityName="IfcDirection"/>

 </EntityRules>

 </AttributeRule>

 </AttributeRules>

 </EntityRule>

 </EntityRules>

 </AttributeRule>

 <AttributeRule AttributeName="TrueNorth">

 <EntityRules>

 <EntityRule EntityName="IfcDirection"/>

 </EntityRules>

 </AttributeRule>

 <AttributeRule AttributeName="HasSubContexts">

 <EntityRules>

 <EntityRule EntityName="IfcGeometricRepresentationSubContext">

 <AttributeRules>

 <AttributeRule RuleID="SubContextIdentifier" AttributeName="Con-

textIdentifier">

 <EntityRules>

 <EntityRule EntityName="IfcLabel"/>

 </EntityRules>

 </AttributeRule>

 <AttributeRule RuleID="SubContextType" AttributeName="Con-

textType">

 <EntityRules>

 <EntityRule EntityName="IfcLabel"/>

 </EntityRules>

 </AttributeRule>

 <AttributeRule AttributeName="TargetScale">

 <EntityRules>

 <EntityRule EntityName="IfcPositiveRatioMeasure"/>

 </EntityRules>

 </AttributeRule>

 <AttributeRule AttributeName="TargetView">

 <EntityRules>

 <EntityRule EntityName="IfcGeometricProjectionEnum"/>

 </EntityRules>

 </AttributeRule>

 <AttributeRule AttributeName="UserDefinedTargetView">

 <EntityRules>

(... 90 pages more ...)
The full file can be obtained through the authors.

